【有啥问啥】DeepSeek开源DeepGEMM:释放FP8矩阵乘法加速的潜力

DeepGEMM

DeepSeek开源DeepGEMM:释放FP8矩阵乘法加速的潜力

在人工智能和深度学习领域,通用矩阵乘法(GEMM)是模型训练和推理的核心计算操作。随着模型规模的不断扩大,对GEMM运算效率的需求也日益增长。为了应对这一挑战,DeepSeek 公司开源了 DeepGEMM,一个专为高效FP8(8位浮点)通用矩阵乘法设计的库。本文将深入探讨 DeepGEMM 的技术特性、优势以及应用前景,帮助读者全面了解这一强大的加速工具。

什么是GEMM?为何重要?

通用矩阵乘法(GEMM)指的是计算如下形式的矩阵运算:

C=α∗op(A)@op(B)+β∗CC = α * op(A) @ op(B) + β * CC=αop(A)@op(B)+βC

其中:

  • AAABBB 是输入矩阵。
  • CCC 是输出矩阵。
  • αααβββ 是标量系数。
  • op()op()op() 代表可选的矩阵操作,例如转置或共轭转置。
  • @@@ 表示矩阵乘法。

GEMM 广泛应用于各种计算密集型应用,尤其是在深度学习领域,它构成了卷积神经网络(CNN)、循环神经网络(RNN)、Transformer 模型等的核心计算层。因此,GEMM 的效率直接影响着 AI 模型的训练和推理速度

DeepGEMM:专为FP8而生的高效矩阵乘法库

DeepGEMM 是 DeepSeek 推出的一款开源库,专注于实现高效的 FP8 通用矩阵乘法。其设计目标是为 DeepSeek V3 及其他 AI 模型的训练和推理任务提供强大的加速支持。

核心特性和优势:

  1. 极致的FP8性能: DeepGEMM 采用 FP8 数据类型进行计算。FP8 是一种低精度浮点格式,相比传统的 FP32 或 FP16,FP8 具有以下显著优势:

    • 更高的计算吞吐量: FP8 运算能够充分利用现代 GPU (尤其是 NVIDIA Hopper 架构) 上的 Tensor Core 加速单元,实现更高的计算速度。
    • 更低的内存占用: FP8 数据格式仅占用 8 位,显著减少了内存带宽需求和存储空间,从而降低了硬件成本,并提升了数据传输效率。
  2. 细粒度缩放 (Fine-grained Scaling): DeepGEMM 采用了 DeepSeek-V3 中提出的细粒度缩放技术。这项技术能够更精细地控制 FP8 计算过程中的数值范围,最大程度地保留计算精度,同时避免溢出或下溢问题,确保 FP8 计算的稳定性和可靠性。

  3. 支持普通 GEMM 和混合专家 (MoE) 分组 GEMM: DeepGEMM 不仅支持标准的矩阵乘法,还针对混合专家模型 (MoE) 进行了优化,能够高效处理 MoE 模型中特有的分组 GEMM 运算。MoE 模型是近年来大型模型发展的重要趋势,DeepGEMM 对 MoE 的支持使其能够更好地服务于未来更大规模的 AI 模型。

  4. CUDA 编写,即时编译 (JIT): DeepGEMM 使用 CUDA 语言编写,充分利用 NVIDIA GPU 的硬件特性。更重要的是,DeepGEMM 采用轻量级的即时编译 (JIT) 模块,在运行时动态编译所有内核代码。这种方式 无需在安装时进行预编译,极大地简化了部署流程,并提高了灵活性和兼容性。

  5. 优异的性能表现: 根据 DeepSeek 官方的测试数据,DeepGEMM 相比基于 CUTLASS 3.6 的优化实现,在普通 GEMM (密集模型) 中最高可提速 2.7 倍。即使在分组 GEMM (MoE 模型) 的连续性布局和掩码布局下,DeepGEMM 的性能提升也 可达到 1.2 倍以上。实测计算性能 最高可达 1358 TFLOPS,内存带宽峰值 高达 2668 GB/s

  6. 两级累加 (Two-level Accumulation): 为了解决 FP8 张量核在累加计算时可能出现的精度问题,DeepGEMM 采用了基于 CUDA Core 的两级累加技术。这种技术能够在保证计算精度的前提下,充分发挥 FP8 的性能优势。

  7. 简洁高效的代码: DeepGEMM 的代码库设计 简洁而高效。核心代码仅有 300 行左右,但却实现了专家级优化的内核性能。这不仅降低了维护成本,也方便开发者进行二次开发和定制。

DeepGEMM 的应用场景

DeepGEMM 作为一款高性能的矩阵乘法库,可以广泛应用于以下场景:

  • 深度学习模型训练: 加速各种深度学习模型的训练过程,特别是计算密集型的模型,如大型语言模型、视觉 Transformer 模型等。
  • 深度学习模型推理: 提升模型推理速度,降低延迟,尤其适用于对实时性要求较高的应用场景。
  • 科学计算: 在需要进行大规模矩阵运算的科学计算领域,例如物理模拟、气象预测、生物信息学等,DeepGEMM 也能发挥重要作用。
  • 高性能计算 (HPC): 作为高性能计算的基础组件,DeepGEMM 可以为各种 HPC 应用提供强大的矩阵运算加速能力。

总结与展望

DeepSeek 开源 DeepGEMM,无疑为 AI 社区贡献了一个宝贵的加速工具。它充分利用了 FP8 数据类型的优势,并结合细粒度缩放、JIT 编译等先进技术,实现了极致的矩阵乘法性能。DeepGEMM 的开源,不仅能够帮助研究人员和开发者 更高效地训练和部署 AI 模型,也将 推动 FP8 等低精度计算技术在 AI 领域的普及和应用

DeepSeek 也表示,DeepGEMM 在某些特定形状的矩阵运算上可能还存在优化空间,并 欢迎开发者社区积极参与,共同优化和完善 DeepGEMM。相信在社区的共同努力下,DeepGEMM 将会变得更加强大,为 AI 技术的进步贡献更大的力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有啥问啥

您的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值