自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(355)
  • 收藏
  • 关注

原创 【华为开发者大会2025】HarmonyOS 6 正式发布:全场景智能新体验,开启高效鸿蒙开发时代

2025年6月20日,HDC2025大会发布HarmonyOS 6,鸿蒙生态飞轮加速,带来全新的鸿蒙体验和开发模式,公布了Beta版支持机型,开启万物智联新纪元 。

2025-06-21 07:00:00 2773 57

原创 【华为Pura80系列】鸿蒙生态再升级:Pura 80 系列影像突破,WATCH 5 开启智能手表新纪元

2025年6月11日华为Pura80系列及全场景新品发布会,亮点纷呈,Pura 80系列影像与设计出众,WATCH 5功能创新,鸿蒙5.1加持,全场景生态再升级,科技体验迈向新高度。

2025-06-11 21:24:37 2727 72

原创 【华为鸿蒙电脑】首款鸿蒙电脑发布:MateBook Fold 非凡大师 & MateBook Pro,擎云星河计划启动

2025年5月华为发布nova14系列及鸿蒙电脑,MateBook Fold 非凡大师 和 MateBook Pro,并启动擎云计划,公布HarmonyOS 5.0.1升级规划。

2025-05-20 08:00:00 14025 87

原创 【华为Pura先锋盛典】华为Pura X“阔折叠”手机发布:首次全面搭载HarmonyOS 5

华为新生态手机Pura X以16:10阔型屏与AI眼动交互视觉体验登场,首搭HarmonyOS 5实现40%性能跃升,万亿级大模型驱动智能服务进化。红枫四摄开启多光谱影像时代。鸿蒙生态全面冲刺,电脑新品蓄势待发,开启全场景智慧生态新纪元。

2025-03-21 11:15:15 4160 80

原创 【博客之星2024年度总评选】年度回望:我的博客之路与星光熠熠

在过去的2024年里,我经历了许多的挑战和成长,本文主要是回顾我的个人成长历程,以及在创作和日常生活方面的突破,分享我是如何平衡个人生活与博客创作的经验。

2025-01-20 09:30:00 3570 102

原创 【鸿蒙生态崛起,开发者有哪些机遇与挑战?】HarmonyOS NEXT 引领数字化未来

鸿蒙系统不断创新发展,在智能手机、穿戴、车载、家居等行业领域的应用越来越广泛。HarmonyOS NEXT的发布标志着鸿蒙操作系统进入了全新发展阶段,揭示了在智能生态建设方面的最新成果,原生鸿蒙将为全球用户带来更加智能、互联的数字化生活。

2024-11-08 09:00:00 6438 66

原创 【深度学习优化算法】06:动量法

本文探讨更高效优化算法,重点介绍了泄漏平均值(动量)方法,通过累加过去梯度减小方差,提高收敛性。还分析了条件不佳问题,通过数学推导和实例展示了动量法在优化中的优势,包括扩大学习率范围,提高参数适应性,加速收敛。

2025-07-15 21:02:34 737 46

原创 【飞算JavaAI】一站式智能开发,驱动Java开发全流程革新

本文介绍Java智能开发助手:飞算JavaAI。其支持自然语言交互,实现需求分析到代码生成的全流程自动化,具备智能分析、自定义规范、引导开发等能力,Java Chat、智能问答、SQL Chat等功能模块覆盖全研发场景,提升开发效率与代码质量。

2025-07-12 09:54:50 1385 47

原创 【深度学习优化算法】05:小批量随机梯度下降

本文讲解梯度下降与随机梯度下降的极端情况,引出小批量随机梯度下降作为折中方案。通过实践分析向量化与缓存对计算效率的影响,对比不同批量大小的性能,并展示了使用深度学习框架的简洁实现方式,强调了小批量随机梯度下降在收敛速度和计算效率上的平衡。

2025-07-08 08:30:00 1230 45

原创 【机器学习与数据挖掘实战 | 商务】案例19:基于多层感知器算法的通信运营商客户流失分析与预测

本案例聚焦通信运营商客户流失分析与预测案例。先阐述分析需求;数据准备时进行去重、降维等操作并合并记录、简化特征;特征工程做独热编码;客户流失预测用多层感知器算法建模,还划分数据集、标准化数据并分析评价结果。

2025-07-07 08:30:00 550 35

原创 【深度学习优化算法】04:随机梯度下降

本文讲解随机梯度下降通过随机采样降低计算代价至O(1),但受梯度随机性影响轨迹嘈杂。动态调整学习率可缓解此问题,实践中采用无替换采样遍历数据,以不同随机顺序提高数据效率,按O(1/√T)速度收敛至最优解。

2025-07-04 21:34:59 1337 45

原创 【飞算JavaAI】智能开发助手赋能Java领域,飞算JavaAI全方位解析

数字化浪潮下Java开发挑战多,飞算JavaAI于2025年1月发布,支持自然语言与语音交互,有三大核心能力,能重塑AI编码价值,安装便捷,有“智能引导”等多功能板块,可提升开发效率与质量。

2025-07-02 08:30:00 1724 58

原创 【MCP服务】蓝耘元生代 | 蓝耘MCP平台来袭!DeepSeek MCP服务器玩转大模型集成

蓝耘智算云平台推出“MCP 广场”,集成众多 MCP 服务。注册登录后可进入广场选服务。以 DeepSeek MCP 服务器为例,介绍其安装、功能,含多轮对话、自动切换模型等,还提及测试方法及服务工具详情。

2025-06-30 08:30:00 2334 43

原创 【机器学习与数据挖掘实战 | 医疗】案例18:基于Apriori算法的中医证型关联规则分析

本案例针对三阴乳腺癌患者,经问卷调查收集数据并筛选处理形成原数据,经清洗、特征选择与变换后,构建Apriori模型,基于业务理解与建模结果,分析患者症状与中医证型关联,并据症状给出建议 。

2025-06-27 07:54:43 736 52

原创 【MCP服务】蓝耘元生代 | MCP平台:部署时间服务器MCP,开启大模型交互新体验

本文先介绍为大模型与外部资源集成提供标准化接口的MCP协议,接着介绍蓝耘MCP平台,还阐述其注册登录步骤及时间MCP服务器使用教程,助力开发者开发高效智能AI应用。

2025-06-25 08:00:00 1551 55

原创 【深度学习优化算法】03:梯度下降

本文讲解梯度下降优化目标函数,关键在于学习率选择,过大会发散,过小会无进展,可能陷入局部极小值,高维模型中调整学习率复杂,预处理有助于调节。

2025-06-23 08:00:00 1100 55

原创 【金仓数据库】KingbaseES在线体验平台:开启国产数据库学习新征程

本文介绍国产数据库KingbaseES,测试在线体验平台为数据库学习者提供便捷实践环境,助其快速掌握功能。未来平台将优化功能,金仓也将升级产品,提供更优解决方案。

2025-06-17 20:49:32 1674 62

原创 【机器学习与数据挖掘实战 | 商务】案例17:基于K-means和决策树的餐饮企业综合分析

本案例聚焦餐饮企业综合分析,先阐述分析需求、数据状况与处理流程,接着通过K-Means进行客户价值聚类,最后利用决策树构建客户流失预测模型并分析结果。

2025-06-16 08:49:42 916 53

原创 【机器学习与数据挖掘实战 | 医疗】案例16:基于K-Means聚类的医疗保险的欺诈发现

本案例利用医疗保险历史数据,通过描述性统计与数据清洗分析投保人和医疗机构信息,运用K-Means聚类构建欺诈发现模型,分析结果并度量算法性能,最后进行优化。

2025-06-14 08:00:00 944 47

原创 【PySpark安装配置】01 搭建单机模式的PySpark开发环境(Windows系统)

本文讲解在Windows系统上搭建可以运行PySpark程序的开发环境。包括安装JDK,安装Anaconda,安装Hadoop,安装MySQL,安装Hive,配置PySpark模块等步骤,最后运行Jupyter Notebook。

2025-06-09 08:00:00 1395 59

原创 【深度学习优化算法】02:凸性

本节讲解了凸函数,目的是帮助我们详细了解优化算法。凸函数的下水平集是凸的。这一性质不仅在数学上具有重要意义,而且在优化问题和机器学习领域也有广泛的应用。通过理解和利用这一性质,我们可以更好地解决实际问题并设计出更高效的算法。

2025-06-04 09:26:32 1994 86

原创 【通义千问】蓝耘元生代 | 免费千万Token!解锁通义Qwen2.5-72B-Instruct自然语言处理新体验

本文详述蓝耘元生代MaaS平台与Qwen2.5-72B-Instruct模型,涵盖平台特性、使用流程,还展示应用实例,新用户可获千万Token,前景可期。

2025-06-02 08:00:00 2195 71

原创 【深度学习优化算法】01:优化和深度学习

本文讲解深度学习优化。深度学习优化旨在最小化损失函数(训练误差),但核心挑战在于平衡训练与泛化误差。优化过程面临三大障碍:局部最小值、鞍点、梯度消失,激活函数饱和区域导致优化停滞,需结合优化算法与正则化策略应对过拟合。

2025-05-30 11:50:12 1467 68

原创 远控安全进阶之战:TeamViewer/ToDesk/向日葵设备安全策略对比

本文选取了当下最热门的TeamViewer、ToDesk、向日葵这三款国内外远程控制代表厂商,从软件介绍、远控安全策略等多个维度展开深入对比,突出ToDesk安全进阶的创新功能“二次验证保护”,呈现一场精彩的远控软件安全进阶“大比拼”。

2025-05-26 08:12:01 7214 99

原创 【金仓数据库】数据库:用户心中的成见是一座大山

文章探讨了数据库选择中的常见误区,特别是对分布式数据库的过度追捧。介绍了金仓数据库如何根据不同业务需求提供定制化解决方案,包括分布式应用、多租户、集中式高可用和真正的分布式数据库需求。

2025-05-21 19:17:14 1288 70

原创 【DeepSeek】蓝耘元生代 | 免费千万Token!蓝耘智算助力DeepSeek-R1开发者生态

本文系统阐述了DeepSeek-R1与蓝耘MaaS平台协同创新,提供免费Token资源,助推AI生态链发展。蓝耘MaaS平台作为模型即服务的先行者,提供了丰富的预训练模型库,用户可通过平台轻松调用DeepSeek-R1模型进行文案生成、代码编写等任务。

2025-05-18 12:28:44 3633 82

原创 【现代深度学习技术】注意力机制07:Transformer

Transformer基于自注意力和位置编码,采用编码器-解码器架构。编码器和解码器通过堆叠多头注意力层和前馈网络构成,利用残差连接和层规范化提升训练效果,在并行计算和短依赖路径优势下,广泛应用于序列任务如机器翻译。

2025-05-15 10:00:36 2692 77

原创 【现代深度学习技术】注意力机制06:自注意力和位置编码

本文讲解自注意力和位置编码。自注意力通过并行处理全局依赖,结合正弦/余弦位置编码注入序列位置信息,虽计算复杂度高,但路径短,克服了RNN/CNN的顺序限制,有效捕获长距离关系。

2025-05-12 09:19:53 1350 51

原创 【现代深度学习技术】注意力机制05:多头注意力

本文讲解注意力机制的多头注意力。通过并行学习多组线性投影,将查询、键和值映射到不同子空间,每个头独立计算注意力后拼接结果,再经线性变换融合不同关注模式,从而捕捉序列中多样化的依赖关系。

2025-05-12 08:56:09 1768 52

原创 【现代深度学习技术】注意力机制04:Bahdanau注意力

本文讲解注意力机制中的Bahdanau注意力。Bahdanau注意力机制通过动态调整上下文变量,在解码时使用加性注意力聚焦编码器隐状态的相关部分,替代固定上下文,提升机器翻译的准确性和对齐效果。

2025-05-10 09:04:36 1352 50

原创 【现代深度学习技术】注意力机制03:注意力评分函数

本文讲解注意力评分函数。加性注意力通过MLP处理不同长度查询键,缩放点积注意力利用点积和√d缩放提升效率。掩蔽softmax过滤无效位置,结合加权值实现注意力汇聚,代码演示权重分布,为复杂模型奠定基础。

2025-05-09 21:59:45 1425 34

原创 【现代深度学习技术】注意力机制02:注意力汇聚:Nadaraya-Watson核回归

本节通过Nadaraya-Watson核回归演示注意力机制:首先生成非线性数据集,对比平均汇聚的局限性;引入非参数注意力模型,使用高斯核计算权重实现平滑预测;扩展为带参数模型,通过可学习权重调整注意力分布,但可能过拟合导致预测波动。实验显示参数模型注意力权重更集中但预测欠平滑。

2025-05-07 10:42:36 1114 45

原创 【现代深度学习技术】注意力机制01:注意力提示

本文讲解注意力机制中的注意力提示。注意力是稀缺资源,通过自主(查询)与非自主(键)提示引导,机制将感官输入(值)加权汇聚,热图可视化权重分配。

2025-05-06 09:42:30 1221 57

原创 【现代深度学习技术】现代循环神经网络08:束搜索

本文讲解现代循环神经网络中的束搜索。贪心搜索逐步选最高概率词元,可能非全局最优;穷举搜索遍历所有组合,计算成本过高;束搜索维护k个候选序列,平衡效率与精度,通过评分公式优选最佳输出。

2025-05-05 11:02:49 1107 37

原创 【现代深度学习技术】现代循环神经网络07:序列到序列学习(seq2seq)

本文讲解现代循环神经网络中的序列到序列学习。seq2seq模型采用RNN编码器将变长序列编码为隐状态,解码器基于隐状态逐步生成输出。训练时使用遮蔽损失忽略填充词元,BLEU评估翻译质量。应用于机器翻译,通过教师强制策略训练,预测时逐词生成并用注意力机制优化结果。

2025-05-05 10:24:21 2033 50

原创 【现代深度学习技术】现代循环神经网络06:编码器-解码器架构

本文讲解现代循环神经网络的“编码器-解码器”架构。“编码器-解码器”架构可以将长度可变的序列作为输入和输出,因此适用于机器翻译等序列转换问题。将长度可变的序列作为输入,并将其转换为具有固定形状的编码状态。将具有固定形状的编码状态映射为长度可变的序列。

2025-05-04 12:18:18 1969 33

原创 【现代深度学习技术】现代循环神经网络05:机器翻译与数据集

本文讲解现代循环神经网络地机器翻译与数据集。机器翻译指的是将文本序列从一种语言自动翻译成另一种语言。使用单词级词元化时的词表大小,将明显大于使用字符级词元化时的词表大小。为了缓解这一问题,我们可以将低频词元视为相同的未知词元。通过截断和填充文本序列,可以保证所有的文本序列都具有相同的长度,以便以小批量的方式加载。

2025-05-04 12:06:22 1365 38

原创 【现代深度学习技术】现代循环神经网络04:双向循环神经网络

本文讲解了双向循环神经网络。从序列学习扩展场景切入,详述隐马尔可夫模型动态规划解法,引申双向循环神经网络架构、定义、计算代价、典型应用,并给出错误应用示例与风险警示,凸显实践要点。

2025-05-03 08:00:00 1856 43

原创 【现代深度学习技术】现代循环神经网络03:深度循环神经网络

本文讲解深度循环神经网络。通过堆叠多个隐藏层增强表达能力,每层隐状态传递至下一时间步和相邻层,使用激活函数处理输入及前序状态,PyTorch实现多层LSTM时因参数增多导致训练速度下降。

2025-05-02 08:00:00 1331 45

原创 【现代深度学习技术】现代循环神经网络02:长短期记忆网络(LSTM)

本文讲解现代循环神经网络中的长短期记忆网络(LSTM),通过输入门、遗忘门、输出门和记忆元解决长短期依赖问题,结构较GRU复杂但提出更早,支持从零实现和框架简洁调用。

2025-05-01 11:35:30 1392 40

【机器学习&数据挖掘】离群点检测-源代码+数据集

本文首先介绍了离群点检测的相关概念和方法,接着详细讲解了离群点检测的具体方法,包括基于模型的离群点检测方法和基于聚类的离群点检测方法,最后在Sklearn中应用异常值的检测方法。 该压缩包中包括离群点检测的源代码和相关数据集。

2025-01-13

【机器学习&数据挖掘】时间序列算法-源代码+数据集

本文首先介绍了常用的时间序列算法和时间序列的预处理,接着讲解平稳时间序列分析,包括AR模型、MA模型和ARMA模型,最后讲解基于ARIMA模型的非平稳时间序列分析。 该数据集包括基于ARIMA模型的非平稳时间序列分析的源代码和数据集。

2024-12-31

【机器学习&数据挖掘】智能推荐算法-源代码+数据集

本文首先介绍了智能推荐的概念、应用、评价指标,然后讲解了智能推荐常见的关联规则算法,包括Apriori和FP-Growth,最后讲解常见的协同过滤推荐技术,包括基于用户的协同过滤推荐和基于物品的协同过滤推荐。 该压缩包中包括关联规则挖掘算法(Apriori算法、FP-Growth算法),协同过滤过滤推荐算法(基于用户、基于物品),以及代码中所对应的数据集。

2024-12-28

逻辑回归分析简单示例数据集

【机器学习与实现】逻辑回归分析简单示例中用到的数据集,包括credit.xlsx和LogisticRegression.csv。供参考。

2024-05-18

Python数据分析实验三(基于Scikit-Learn构建数据分析模型)数据集

Python数据分析实验三(基于Scikit-Learn构建数据分析模型)数据集,包括数据集winequality-red.csv。供参考。

2024-05-16

波士顿房价分析数据集boston.csv

【机器学习与实现】线性回归示例——波士顿房价分析数据集

2024-05-07

Python数据分析实验二(数据预处理)数据集

Python数据分析实验二(数据预处理)数据集,包括数据集chipotle.csv和train.csv。供参考。

2024-04-27

meal-order-detail.xlsx

Matplotlib数据集meal_order_detail.xlsx

2024-04-11

数据集-超市营业额2.zip

Pandas作业数据集-超市营业额2.zip(完整版)

2024-04-07

数据集-员工表.xlsx

DataFrame-员工表.xlsx数据集

2024-04-04

数据集team.xlsx

DataFrame-team.xlsx数据集

2024-04-01

Python编程实验五:文件的读写操作-素材

Python编程实验五:文件的读写操作-素材

2024-02-28

Python编程作业四:文件操作-素材

Python编程作业四:文件操作-素材

2024-02-28

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除