AI测试入门:理解 LLM 的评估指标

前言

随着人工智能技术的飞速发展,大型语言模型(LLM)在各个领域中的应用越来越广泛。无论是自然语言处理、图像识别还是决策支持系统,LLM 都展现出了巨大的潜力和价值。为了有效地评估和利用这些模型,我们需要一套科学、系统的评估指标。

1. 评估指标的分类

以下是一些常见的评估指标:

  • 准确性(Accuracy):通过比较所有预测正确的样本数与总样本数来计算。
  • 精确度(Precision):计算模型预测为正类别中实际为正的比例。
  • 召回率(Recall):计算所有实际为正类别中被正确预测的比例。
  • F1分数(F1 Score):计算精确度和召回率的调和平均值。
  • ROC曲线和AUC值:使用不同的阈值绘制真正率与假正率的关系,计算曲线下面积。
  • 混淆矩阵(Confusion Matrix):构建一个表格,展示每个类别的预测和实际标签。
  • 模型鲁棒性(Robustness):评估模型对输入数据中的异常值、噪声或小的变化的抵抗能力。
  • 模型泛化能力(Generalization):评估模型对新数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

blues_C

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值