AI测试入门:理解 LLM 的评估指标
前言
随着人工智能技术的飞速发展,大型语言模型(LLM)在各个领域中的应用越来越广泛。无论是自然语言处理、图像识别还是决策支持系统,LLM 都展现出了巨大的潜力和价值。为了有效地评估和利用这些模型,我们需要一套科学、系统的评估指标。
1. 评估指标的分类
以下是一些常见的评估指标:
- 准确性(Accuracy):通过比较所有预测正确的样本数与总样本数来计算。
- 精确度(Precision):计算模型预测为正类别中实际为正的比例。
- 召回率(Recall):计算所有实际为正类别中被正确预测的比例。
- F1分数(F1 Score):计算精确度和召回率的调和平均值。
- ROC曲线和AUC值:使用不同的阈值绘制真正率与假正率的关系,计算曲线下面积。
- 混淆矩阵(Confusion Matrix):构建一个表格,展示每个类别的预测和实际标签。
- 模型鲁棒性(Robustness):评估模型对输入数据中的异常值、噪声或小的变化的抵抗能力。
- 模型泛化能力(Generalization):评估模型对新数