线性回归模型

1.线性回归模型原理与推导

给定一组由输入𝒙和输出𝑦构成的数据集, D = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , … , ( x m , y m ) } , 其中 x i = ( x i 1 ; x i 2 ; … ; x i d ) , y i ∈ R D = \{ (x_1,y_1), (x_2,y_2), \ldots, (x_m,y_m) \}, \text{其中} x_i = (x_{i1};x_{i2};\ldots;x_{id}), y_i \in \mathbb{R} D={(x1,y1),(x2,y2),,(xm,ym)},其中xi=(xi1;xi2;;xid),yiR线性回归就是通过训练学习得到一个线性模型来最大程度地根据输入𝒙拟合输出𝑦。
线性回归学习的关键问题在于确定参数wb,使得拟合输出y与真实输出y尽可能接近。在回归任务中,我们通常使用均方误差来度量预测与标签之间的损失,所以回归任务的优化目标就是使得拟合输出和真实输出之间的均方误差最小化,所以有:
( w ∗ , b ∗ ) = arg ⁡ min ⁡ ∑ i = 1 m ( y − y i ) 2 = arg ⁡ min ⁡ ∑ i = 1 m ( w x i + b − y i ) 2 \begin{align*} (w^*,b^*)&=\arg\min\sum_{i = 1}^{m}(y - y_i)^2\\ &=\arg\min\sum_{i = 1}^{m}(wx_i + b - y_i)^2 \end{align*} (w,b)=argmini=1m(yyi)2=argmini=1m(wxi+byi)2
为求得𝑤和𝑏的最小化参数𝑤∗和𝑏∗,可基于均方损失函数分别对𝑤和𝑏求一阶导数并令其为0,𝑤的求导推导过程如下所示:
∂ L ( w , b ) ∂ w = ∂ ∂ w [ ∑ i = 1 m ( w x i + b − y i ) 2 ] = ∑ i = 1 m ∂ ∂ w [ ( y i − w x i − b ) 2 ] = ∑ i = 1 m [ 2 ⋅ ( y i − w x i − b ) ⋅ ( − x i ) ] = ∑ i = 1 m [ 2 ⋅ ( w x i 2 − y i x i + b x i ) ] = 2 ⋅ ( w ∑ i = 1 m x i 2 − ∑ i = 1 m y i x i + b ∑ i = 1 m x i ) \begin{align*} \frac{\partial L(w,b)}{\partial w} &= \frac{\partial }{\partial w}\left[\sum_{i = 1}^{m}(wx_{i}+b - y_{i})^{2}\right] \\ &= \sum_{i = 1}^{m}\frac{\partial }{\partial w}[(y_{i}-wx_{i}-b)^{2}] \\ &= \sum_{i = 1}^{m}[2\cdot(y_{i}-wx_{i}-b)\cdot(-x_{i})] \\ &= \sum_{i = 1}^{m}[2\cdot(wx_{i}^{2}-y_{i}x_{i}+bx_{i})] \\ &= 2\cdot\left(w\sum_{i = 1}^{m}x_{i}^{2}-\sum_{i = 1}^{m}y_{i}x_{i}+b\sum_{i = 1}^{m}x_{i}\right) \end{align*} wL(w,b)=w[i=1m(wxi+byi)2]=i=1mw[(yiwxib)2]=i=1m[2(yiwxib)(xi)]=i=1m[2(wxi2yixi+bxi)]=2(wi=1mxi2i=1myixi+bi=1mxi)
∂ L ( w , b ) ∂ b = ∂ ∂ b [ ∑ i = 1 m ( w x i + b − y i ) 2 ] = ∑ i = 1 m ∂ ∂ b [ ( y i − w x i − b ) 2 ] = ∑ i = 1 m [ 2 ⋅ ( y i − w x i − b ) ⋅ ( − 1 ) ] = ∑ i = 1 m [ 2 ⋅ ( − y i + w x i + b ) ] = 2 ⋅ ( − ∑ i = 1 m y i + ∑ i = 1 m w x i + ∑ i = 1 m b ) = 2 ( m b − ∑ i = 1 m ( y i − w x i ) ) \begin{align*} \frac{\partial L(w,b)}{\partial b} &= \frac{\partial }{\partial b}\left[\sum_{i = 1}^{m}(wx_{i}+b - y_{i})^{2}\right] \\ &= \sum_{i = 1}^{m}\frac{\partial }{\partial b}[(y_{i}-wx_{i}-b)^{2}] \\ &= \sum_{i = 1}^{m}[2\cdot(y_{i}-wx_{i}-b)\cdot(-1)] \\ &= \sum_{i = 1}^{m}[2\cdot(-y_{i}+wx_{i}+b)] \\ &= 2\cdot\left(-\sum_{i = 1}^{m}y_{i}+\sum_{i = 1}^{m}wx_{i}+\sum_{i = 1}^{m}b\right) \\ &= 2\left(mb - \sum_{i = 1}^{m}(y_{i}-wx_{i})\right) \end{align*} bL(w,b)=b[i=1m(wxi+byi)2]=i=1mb[(yiwxib)2]=i=1m[2(yiwxib)(1)]=i=1m[2(yi+wxi+b)]=2(i=1myi+i=1mwxi+i=1mb)=2(mbi=1m(yiwxi))
可解得𝑤和𝑏的最优表达为:
w ∗ = ∑ i = 1 m y i ( x i − x ˉ ) ∑ i = 1 m x i 2 − 1 m ( ∑ i = 1 m x i ) 2 w^{*}=\frac{\sum_{i = 1}^{m}y_{i}(x_{i}-\bar{x})}{\sum_{i = 1}^{m}x_{i}^{2}-\frac{1}{m}(\sum_{i = 1}^{m}x_{i})^{2}} w=i=1mxi2m1(i=1mxi)2i=1myi(xixˉ)
b ∗ = 1 m ∑ i = 1 m ( y i − w x i ) b^{*}=\frac{1}{m}\sum_{i = 1}^{m}(y_{i}-wx_{i}) b=m1i=1m(yiwxi)
这种基于均方误差最小化求解线性回归参数的方法就是著名的最小二乘法(leastsquaresmethod),在统计分析中,也叫普通最小二乘(OrdinaryLeast Squares,OLS)

2.多元回归的进一步推导

将上述推导过程进行矩阵化以适应多元线性回归问题。所谓多元问题,就是输入有 𝑑 个变量, 如前述影响薪资水平的因素包括城市、学历、年龄和经验等。 为方便矩阵化的最小二乘法的推导,可将参数𝑤和𝑏合并为向量表达形 w ^ = ( w ; b ) \widehat{\boldsymbol{w}} = (\boldsymbol{w}; b) w =(w;b)。训练数据集D的输入部分可表示为一个𝑚 ×(𝑑 + 1)维的矩阵𝑿,其中𝑑为输入变量的个数。 则矩阵𝑿和𝑦可表示为:
X = ( x 11 x 12 ⋯ x 1 d 1 x 21 x 22 ⋯ x 2 d 1 ⋮ ⋮ ⋱ ⋮ ⋮ x m 1 x m 2 ⋯ x m d 1 ) = ( x 1 T 1 ⋮ ⋮ x m T 1 ) y = ( y 1 ; y 2 ; ⋯   ; y m ) \boldsymbol{X} = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1d} & 1 \\ x_{21} & x_{22} & \cdots & x_{2d} & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{md} & 1 \end{pmatrix} = \begin{pmatrix} \boldsymbol{x}_{1}^{\mathrm{T}} & 1 \\ \vdots & \vdots \\ \boldsymbol{x}_{m}^{\mathrm{T}} & 1 \end{pmatrix} \quad \boldsymbol{y} = (y_{1}; y_{2}; \cdots ; y_{m}) X= x11x21xm1x12x22xm2x1dx2dxmd111 = x1TxmT11 y=(y1;y2;;ym)
参数优化目标函数的矩阵化表达式为:
w ^ ∗ = arg ⁡ min ⁡ ( y − X w ^ ) T ( y − X w ^ ) \widehat{\boldsymbol{w}}^{*} = \arg\min (\boldsymbol{y} - \boldsymbol{X}\widehat{\boldsymbol{w}})^{\mathrm{T}}(\boldsymbol{y} - \boldsymbol{X}\widehat{\boldsymbol{w}}) w =argmin(yXw )T(yXw )
L = ( y − X w ^ ) T ( y − X w ^ ) L = (\boldsymbol{y} - \boldsymbol{X}\widehat{\boldsymbol{w}})^{\mathrm{T}}(\boldsymbol{y} - \boldsymbol{X}\widehat{\boldsymbol{w}}) L=(yXw )T(yXw ),对参数 w ^ \widehat{\boldsymbol{w}} w 求导,其推导过程如下:
L = y T y − y T X w ^ − w ^ T X T y + w ^ T X T X w ^ L = \boldsymbol{y}^{\mathrm{T}}\boldsymbol{y} - \boldsymbol{y}^{\mathrm{T}}\boldsymbol{X}\widehat{\boldsymbol{w}} - \widehat{\boldsymbol{w}}^{\mathrm{T}}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{y} + \widehat{\boldsymbol{w}}^{\mathrm{T}}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\widehat{\boldsymbol{w}} L=yTyyTXw w TXTy+w TXTXw
由微分矩阵公式
∂ a T x ∂ x = ∂ x T a ∂ x = a ∂ x T A x ∂ x = ( A + A T ) x \frac{\partial \boldsymbol{a}^{\mathrm{T}}\boldsymbol{x}}{\partial \boldsymbol{x}} = \frac{\partial \boldsymbol{x}^{\mathrm{T}}\boldsymbol{a}}{\partial \boldsymbol{x}} = \boldsymbol{a} \quad \frac{\partial \boldsymbol{x}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{x}}{\partial \boldsymbol{x}} = (\boldsymbol{A} + \boldsymbol{A}^{\mathrm{T}})\boldsymbol{x} xaTx=xxTa=axxTAx=(A+AT)x
可得:
∂ L ∂ w ^ = 0 − X T y − X T y + ( X T X + X T X ) w ^ = 2 X T ( X w ^ − y ) \frac{\partial L}{\partial \widehat{\boldsymbol{w}}} = 0 - \boldsymbol{X}^{\mathrm{T}}\boldsymbol{y} - \boldsymbol{X}^{\mathrm{T}}\boldsymbol{y} + (\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X} + \boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})\widehat{\boldsymbol{w}} = 2\boldsymbol{X}^{\mathrm{T}}(\boldsymbol{X}\widehat{\boldsymbol{w}} - \boldsymbol{y}) w L=0XTyXTy+(XTX+XTX)w =2XT(Xw y)
当矩阵 ( X T X ) (\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}) (XTX)为满秩矩阵或者正定矩阵时,令上式等于0,可解得参数为:
w ^ ∗ = ( X T X ) − 1 X T y \widehat{\boldsymbol{w}}^{*} = (\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{y} w =(XTX)1XTy
最终得到多元线性回归模型为:
f ( x ^ i ) = x ^ i T ( X T X ) − 1 X T y f(\widehat{\boldsymbol{x}}_{i}) = \widehat{\boldsymbol{x}}_{i}^{T}(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})^{-1}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{y} f(x i)=x iT(XTX)1XTy

3.线性回归模型的性能评估

根据机器学习三要素,线性回归模型可以看作是以线性回归为模型、以均方损失最小化为策略、以最小二乘法为算法的机器学习方法。
线性回归模型的性能评估方法主要包括平均绝对误差(MAE)、均方/根均方误差评估(MSE/RMSE)、判决系数R2评估等
M A E ( y , y ^ ) = 1 n samples ∑ i = 1 n samples ∣ y i − y ^ i ∣ M S E ( y , y ^ ) = 1 n samples ∑ i = 1 n samples ( y i − y ^ i ) 2 y ˉ = 1 n ∑ i = 1 n y i S S t o t = ∑ i = 1 n ( y i − y ˉ ) 2 S S r e g = ∑ i = 1 n ( f i − y ˉ ) 2 S S r e s = ∑ i = 1 n ( y i − f i ) 2 = ∑ i = 1 n e i 2 R 2 = 1 − S S r e s S S t o t \begin{align*} \mathrm{MAE}(y, \hat{y}) &= \frac{1}{n_{\text{samples}}} \sum_{i = 1}^{n_{\text{samples}}} |y_i - \hat{y}_i| \\ \mathrm{MSE}(y, \hat{y}) &= \frac{1}{n_{\text{samples}}} \sum_{i = 1}^{n_{\text{samples}}} (y_i - \hat{y}_i)^2 \\ \bar{y} &= \frac{1}{n} \sum_{i = 1}^{n} y_i \\ SS_{tot} &= \sum_{i = 1}^{n} (y_i - \bar{y})^2 \\ SS_{reg} &= \sum_{i = 1}^{n} (f_i - \bar{y})^2 \\ SS_{res} &= \sum_{i = 1}^{n} (y_i - f_i)^2 = \sum_{i = 1}^{n} e_i^2 \\ R^2 &= 1 - \frac{SS_{res}}{SS_{tot}} \end{align*} MAE(y,y^)MSE(y,y^)yˉSStotSSregSSresR2=nsamples1i=1nsamplesyiy^i=nsamples1i=1nsamples(yiy^i)2=n1i=1nyi=i=1n(yiyˉ)2=i=1n(fiyˉ)2=i=1n(yifi)2=i=1nei2=1SStotSSres

4.代码实操

线性回归

from sklearn.model_selection import train_test_split  
import pandas as pd  
import warnings  
import numpy as np  
  
warnings.filterwarnings("ignore")  

Boston数据集的13个属性信息如下:

CRIM:城镇人均犯罪率
ZN:住宅用地所占比例
INDUS:城镇中非住宅用地所占比例
CHAS:是否靠近查尔斯河(1表示靠近,0表示不靠近)
NOX:一氧化氮浓度
RM:房屋平均房间数
AGE:自住房屋中建于1940年前的房屋所占比例
DIS:距离5个波士顿就业中心的加权距离
RAD:距离绿色公园的辐射范围
TAX:每10,000美元的全额物业税率
PTRATIO:城镇中学生与教师的比例
B:黑人占比
MEDV:房价中位数(单位:千美元

feature_name = ['CRIM','ZN','INDUS','CHAS','NOX','RM','AGE','DIS','RAD','TAX','PTRATIO','B','MEDV']  
# 加载波士顿房屋数据集  
feature_name = ['CRIM','ZN','INDUS','CHAS','NOX','RM','AGE','DIS','RAD','TAX','PTRATIO','B','MEDV']  
data_url = "http://lib.stat.cmu.edu/datasets/boston"  
raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)  
data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])  
target = raw_df.values[1::2, 2]  
  
# 数据准备  
X = data  
y = target  
#dataset = load_boston()  
df = pd.DataFrame(X,columns=feature_name)  
df['price'] = y  
df.head()  
CRIMZNINDUSCHASNOXRMAGEDISRADTAXPTRATIOBMEDVprice
00.0063218.02.310.00.5386.57565.24.09001.0296.015.3396.904.9824.0
10.027310.07.070.00.4696.42178.94.96712.0242.017.8396.909.1421.6
20.027290.07.070.00.4697.18561.14.96712.0242.017.8392.834.0334.7
30.032370.02.180.00.4586.99845.86.06223.0222.018.7394.632.9433.4
40.069050.02.180.00.4587.14754.26.06223.0222.018.7396.905.3336.2
X = df['RM'].values  
y = df['price'].values  
X[:5], y[:5]  
(array([6.575, 6.421, 7.185, 6.998, 7.147]),     array([24. , 21.6, 34.7, 33.4, 36.2]))  
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1, test_size=0.2, shuffle=True)  
X_train =X_train.reshape((-1,1))  
X_test = X_test.reshape((-1,1))  
y_train = y_train.reshape((-1,1))  
y_test = y_test.reshape((-1,1))  
X_train.shape,  y_train.shape  
((404, 1), (404, 1))  
### 初始化模型参数  
def initialize_params(dims):  
    '''    输入:  
    dims:训练数据变量维度  
    输出:    w:初始化权重参数值  
    b:初始化偏差参数值  
    '''    # 初始化权重参数为零矩阵  
    w = np.zeros((dims, 1))    # 初始化偏差参数为零  
    b = 0    print('w.shape',w.shape)    return w, b  
### 定义模型主体部分  
### 包括线性回归公式、均方损失和参数偏导三部分  
def linear_loss(X, y, w, b):  
    '''    输入:  
    X:输入变量矩阵  
    y:输出标签向量  
    w:变量参数权重矩阵  
    b:偏差项  
    输出:    y_hat:线性模型预测输出  
    loss:均方损失值  
    dw:权重参数一阶偏导  
    db:偏差项一阶偏导  
    '''    # 训练样本数量  
    num_train = X.shape[0]    # 训练特征数量  
    num_feature = X.shape[1]    # 线性回归预测输出  
    y_hat = np.dot(X, w) + b    # 计算预测输出与实际标签之间的均方损失  
    loss = np.sum((y_hat-y)**2)/num_train    # 基于均方损失对权重参数的一阶偏导数  
    dw = np.dot(X.T, (y_hat-y)) /num_train    # 基于均方损失对偏差项的一阶偏导数  
    db = np.sum((y_hat-y)) /num_train    return y_hat, loss, dw, db  
### 定义线性回归模型训练过程  
def linear_train(X, y, learning_rate=0.01, epochs=10000):  
    '''    输入:  
    X:输入变量矩阵  
    y:输出标签向量  
    learning_rate:学习率  
    epochs:训练迭代次数  
    输出:    loss_his:每次迭代的均方损失  
    params:优化后的参数字典  
    grads:优化后的参数梯度字典  
    '''    # 记录训练损失的空列表  
    loss_his = []    # 初始化模型参数  
    w, b = initialize_params(X.shape[1])    # 迭代训练  
    for i in range(1, epochs):        # 计算当前迭代的预测值、损失和梯度  
        y_hat, loss, dw, db = linear_loss(X, y, w, b)        # 基于梯度下降的参数更新  
        w += -learning_rate * dw        b += -learning_rate * db        # 记录当前迭代的损失  
        loss_his.append(loss)        # 每1000次迭代打印当前损失信息  
        if i % 1000 == 0:            print('epoch %d loss %f' % (i, loss))        # 将当前迭代步优化后的参数保存到字典  
        params = {            'w': w,            'b': b        }        # 将当前迭代步的梯度保存到字典  
        grads = {            'dw': dw,            'db': db        }    return loss_his, params, grads  
  
linear_train(X_train, y_train)  
w.shape (1, 1)    epoch 1000 loss 54.673255    epoch 2000 loss 52.544814    epoch 3000 loss 50.857963    epoch 4000 loss 49.521084    epoch 5000 loss 48.461568    epoch 6000 loss 47.621871    epoch 7000 loss 46.956387    epoch 8000 loss 46.428972    epoch 9000 loss 46.010979      



([588.0343564356435,      243.58805442113618,      122.70684288122406,      80.28309345783622,      65.39304088550571,      60.16560630941734,      58.329150981462085,      57.68271921745599,      57.45391226824732,      57.37166614462048,      57.340854221392505,      57.32809296110642,      57.32166681538127,      57.317464354254795,      57.314042721056,      57.310895562600535,      57.307845180263804,      57.30482921275983,      57.301825775045145,      57.298827186723564,      57.295830752347875,      57.29283552587841,      57.289841175208934,      57.28684758368567,      57.28385471026541,      57.28086254043945,      57.2778710690112,      57.27488029405198,      57.27189021478,      57.268900830816,      57.26591214192197,      57.26292414790952,      57.25993684860769,      57.256950243851655,      57.25396433347878,      57.25097911732721,      57.247994595235404,      57.24501076704195,      57.242027632585476,      57.239045191704705,      57.23606344423838,      57.23308239002526,      57.23010202890419,      57.22712236071399,      57.224143385293615,      57.22116510248193,      57.21818751211796,      57.21521061404067,      57.212234408089124,      57.20925889410239,      57.20628407191961,      57.203309941379935,      57.200336502322536,      57.19736375458666,      57.19439169801158,      57.19142033243659,      57.18844965770105,      57.18547967364433,      57.18251038010583,      57.17954177692505,      57.17657386394143,      57.17360664099454,      57.17064010792392,      57.16767426456921,      57.164709110770005,      57.161744646366,      57.15878087119695,      57.15581778510257,      57.152855387922656,      57.149893679497026,      57.14693265966558,      57.143972328268184,      57.141012685144794,      57.13805373013538,      57.13509546307998,      57.13213788381861,      57.12918099219139,      57.12622478803842,      57.12326927119988,      57.12031444151596,      57.1173602988269,      57.11440684297298,      57.111454073794505,      57.10850199113183,      57.105550594825345,      57.10259988471545,      57.09964986064263,      57.096700522447364,      57.0937518699702,      57.0908039030517,      57.08785662153248,      57.08491002525318,      57.081964114054486,      57.0790188877771,      57.07607434626183,      57.0731304893494,      57.07018731688067,      57.06724482869653,      57.06430302463786,      57.061361904545606,      57.05842146826075,      57.0554817156243,      57.05254264647731,      57.04960426066089,      57.04666655801614,      57.043729538384234,      57.04079320160637,      57.037857547523785,      57.03492257597777,      57.03198828680959,      57.02905467986064,      57.0261217549723,      57.023189511985954,      57.0202579507431,      57.01732707108523,      57.01439687285384,      57.01146735589053,      57.00853852003692,      57.00561036513462,      57.00268289102532,      56.999756097550744,      56.996829984552626,      56.99390455187279,      56.99097979935303,      56.98805572683523,      56.98513233416128,      56.98220962117311,      56.979287587712705,      56.97636623362209,      56.97344555874328,      56.97052556291839,      56.96760624598951,      56.9646876077988,      56.9617696481885,      56.958852367000794,      56.95593576407795,      56.953019839262296,      56.95010459239617,      56.94719002332194,      56.944276131882,      56.941362917918845,      56.93845038127494,      56.93553852179279,      56.93262733931498,      56.92971683368411,      56.9268070047428,      56.92389785233372,      56.9209893762996,      56.91808157648315,      56.91517445272717,      56.91226800487446,      56.90936223276791,      56.906457136250374,      56.903552715164786,      56.90064896935412,      56.89774589866136,      56.894843502929554,      56.891941782001766,      56.88904073572112,      56.88614036393074,      56.883240666473824,      56.88034164319358,      56.87744329393325,      56.87454561853617,      56.871648616845626,      56.86875228870499,      56.86585663395767,      56.8629616524471,      56.86006734401676,      56.857173708510146,      56.85428074577081,      56.85138845564234,      56.84849683796835,      56.84560589259249,      56.84271561935845,      56.839826018109974,      56.8369370886908,      56.83404883094477,      56.83116124471568,      56.82827432984741,      56.82538808618389,      56.82250251356905,      56.81961761184687,      56.81673338086138,      56.813849820456625,      56.81096693047668,      56.808084710765705,      56.805203161167846,      56.80232228152731,      56.79944207168833,      56.79656253149515,      56.793683660792134,      56.790805459423574,      56.78792792723387,      56.785051064067446,      56.78217486976875,      56.77929934418228,      56.77642448715254,      56.7735502985241,      56.770676778141556,      56.76780392584955,      56.76493174149275,      56.76206022491586,      56.759189375963615,      56.75631919448079,      56.75344968031222,      56.750580833302735,      56.747712653297235,      56.74484514014063,      56.74197829367788,      56.73911211375398,      56.73624660021398,      56.733381752902936,      56.73051757166593,      56.72765405634811,      56.72479120679466,      56.72192902285079,      56.71906750436174,      56.7162066511728,      56.71334646312928,      56.71048694007652,      56.707628081859966,      56.704769888324975,      56.701912359317056,      56.69905549468169,      56.696199294264396,      56.69334375791078,      56.69048888546642,      56.68763467677697,      56.6847811316881,      56.68192825004554,      56.67907603169502,      56.67622447648232,      56.67337358425329,      56.67052335485376,      56.66767378812964,      56.66482488392685,      56.66197664209136,      56.65912906246916,      56.656282144906285,      56.65343588924884,      56.650590295342894,      56.64774536303459,      56.64490109217012,      56.64205748259573,      56.639214534157624,      56.6363722467021,      56.63353062007549,      56.63068965412415,      56.62784934869447,      56.625009703632884,      56.62217071878584,      56.61933239399986,      56.61649472912148,      56.613657723997264,      56.61082137847381,      56.60798569239777,      56.60515066561584,      56.60231629797472,      56.59948258932114,      56.59664953950194,      56.59381714836388,      56.59098541575386,      56.58815434151876,      56.58532392550549,      56.582494167561045,      56.57966506753242,      56.57683662526663,      56.57400884061075,      56.5711817134119,      56.56835524351721,      56.56552943077388,      56.562704275029084,      56.55987977613011,      56.55705593392421,      56.55423274825874,      56.55141021898102,      56.54858834593845,      56.54576712897846,      56.54294656794852,      56.54012666269609,      56.53730741306875,      56.534488818914056,      56.531670880079595,      56.528853596413015,      56.52603696776199,      56.52322099397423,      56.52040567489748,      56.51759101037951,      56.514777000268154,      56.511963644411246,      56.50915094265669,      56.50633889485239,      56.50352750084632,      56.500716760486455,      56.49790667362084,      56.495097240097536,      56.49228845976462,      56.48948033247025,      56.48667285806258,      56.483866036389834,      56.48105986730024,      56.47825435064206,      56.475449486263635,      56.47264527401327,      56.469841713739385,      56.467038805290365,      56.464236548514684,      56.46143494326083,      56.458633989377304,      56.45583368671267,      56.45303403511554,      56.45023503443451,      56.447436684518266,      56.444638985215505,      56.44184193637495,      56.43904553784537,      56.43624978947557,      56.43345469111439,      56.43066024261072,      56.42786644381343,      56.4250732945715,      56.42228079473389,      56.41948894414961,      56.41669774266773,      56.41390719013732,      56.41111728640751,      56.40832803132744,      56.40553942474631,      56.40275146651334,      56.39996415647778,      56.39717749448896,      56.39439148039616,      56.391606114048784,      56.38882139529621,      56.38603732398789,      56.38325389997328,      56.3804711231019,      56.37768899322328,      56.374907510186986,      56.37212667384264,      56.36934648403987,      56.36656694062839,      56.36378804345788,      56.36100979237811,      56.358232187238855,      56.35545522788995,      56.35267891418122,      56.34990324596257,      56.347128223083935,      56.34435384539526,      56.34158011274654,      56.338807024987815,      56.33603458196914,      56.33326278354061,      56.33049162955237,      56.32772111985458,      56.324951254297446,      56.32218203273119,      56.319413455006114,      56.3166455209725,      56.31387823048071,      56.31111158338112,      56.30834557952412,      56.305580218760184,      56.302815500939765,      56.30005142591341,      56.29728799353164,      56.29452520364507,      56.2917630561043,      56.289001550759984,      56.28624068746284,      56.283480466063565,      56.28072088641292,      56.27796194836171,      56.275203651760755,      56.272445996460924,      56.269688982313106,      56.26693260916825,      56.264176876877315,      56.2614217852913,      56.25866733426125,      56.25591352363821,      56.25316035327332,      56.250407823017724,      56.24765593272255,      56.24490468223906,      56.242154071418476,      56.239404100112075,      56.236654768171164,      56.23390607544711,      56.23115802179129,      56.22841060705512,      56.22566383109004,      56.222917693747554,      56.220172194879176,      56.217427334336435,      56.21468311197098,      56.21193952763439,      56.209196581178325,      56.20645427245451,      56.20371260131465,      56.20097156761049,      56.198231171193854,      56.19549141191658,      56.192752289630505,      56.190013804187544,      56.18727595543963,      56.18453874323875,      56.18180216743688,      56.17906622788606,      56.176330924438375,      56.17359625694594,      56.17086222526087,      56.16812882923536,      56.165396068721606,      56.16266394357188,      56.159932453638426,      56.15720159877357,      56.15447137882967,      56.151741793659085,      56.14901284311426,      56.14628452704763,      56.14355684531166,      56.1408297977589,      56.13810338424189,      56.13537760461322,      56.13265245872549,      56.129927946431394,      56.127204067583605,      56.12448082203483,      56.12175820963787,      56.11903623024547,      56.11631488371048,      56.11359416988577,      56.11087408862423,      56.10815463977876,      56.10543582320238,      56.10271763874803,      56.10000008626878,      56.09728316561769,      56.09456687664785,      56.09185121921241,      56.08913619316452,      56.08642179835739,      56.08370803464428,      56.08099490187842,      56.07828239991316,      56.075570528601794,      56.072859287797726,      56.07014867735436,      56.067438697125134,      56.06472934696352,      56.062020626723026,      56.0593125362572,      56.05660507541963,      56.05389824406391,      56.05119204204372,      56.04848646921269,      56.045781525424566,      56.0430772105331,      56.04037352439204,      56.03767046685526,      56.034968037776565,      56.032266237009836,      56.02956506440902,      56.026864519828045,      56.024164603120916,      56.021465314141636,      56.018766652744276,      56.0160686187829,      56.01337121211166,      56.010674432584686,      56.00797828005618,      56.00528275438037,      56.002587855411505,      55.999893583003875,      55.9971999370118,      55.994506917289655,      55.99181452369182,      55.98912275607274,      55.986431614286865,      55.98374109818866,      55.9810512076327,      55.97836194247352,      55.97567330256573,      55.972985287763954,      55.97029789792284,      55.96761113289711,      55.964924992541484,      55.96223947671072,      55.95955458525964,      55.956870318043045,      55.95418667491583,      55.95150365573287,      55.94882126034911,      55.94613948861953,      55.94345834039911,      55.94077781554289,      55.93809791390593,      55.93541863534335,      55.932739979710306,      55.93006194686191,      55.927384536653406,      55.92470774894002,      55.92203158357703,      55.919356040419736,      55.91668111932347,      55.9140068201436,      55.911333142735536,      55.908660086954725,      55.90598765265665,      55.90331583969677,      55.900644647930676,      55.89797407721391,      55.89530412740209,      55.89263479835086,      55.88996608991589,      55.88729800195287,      55.884630534317566,      55.88196368686574,      55.87929745945321,      55.876631851935805,      55.87396686416941,      55.87130249600993,      55.8686387473133,      55.865975617935504,      55.86331310773256,      55.860651216560484,      55.85798994427536,      55.855329290733316,      55.8526692557905,      55.85000983930304,      55.84735104112721,      55.844692861119185,      55.842035299135304,      55.83937835503185,      55.83672202866516,      55.83406631989162,      55.83141122856762,      55.82875675454964,      55.82610289769413,      55.823449657857616,      55.82079703489662,      55.81814502866776,      55.8154936390276,      55.812842865832806,      55.81019270894006,      55.80754316820605,      55.80489424348755,      55.80224593464132,      55.79959824152418,      55.79695116399296,      55.79430470190453,      55.79165885511582,      55.78901362348377,      55.78636900686536,      55.78372500511758,      55.781081618097495,      55.77843884566216,      55.77579668766871,      55.773155143974265,      55.770514214436034,      55.76787389891119,      55.76523419725698,      55.7625951093307,      55.75995663498964,      55.75731877409116,      55.75468152649261,      55.75204489205142,      55.74940887062503,      55.74677346207092,      55.74413866624657,      55.74150448300955,      55.73887091221742,      55.73623795372778,      55.733605607398296,      55.73097387308661,      55.728342750650455,      55.725712239947555,      55.72308234083569,      55.72045305317266,      55.71782437681631,      55.71519631162451,      55.71256885745516,      55.7099420141662,      55.7073157816156,      55.704690159661375,      55.702065148161545,      55.699440746974204,      55.696816955957416,      55.69419377496936,      55.69157120386817,      55.688949242512074,      55.686327890759294,      55.68370714846809,      55.681087015496786,      55.6784674917037,      55.675848576947196,      55.67323027108567,      55.670612573977586,      55.667995485481384,      55.66537900545554,      55.66276313375863,      55.6601478702492,      55.657533214785836,      55.654919167227185,      55.652305727431894,      55.649692895258674,      55.64708067056624,      55.64446905321337,      55.64185804305884,      55.63924763996149,      55.636637843780164,      55.63402865437378,      55.631420071601234,      55.628812095321514,      55.62620472539359,      55.6235979616765,      55.62099180402927,      55.61838625231103,      55.61578130638088,      55.61317696609798,      55.61057323132152,      55.607970101910695,      55.60536757772481,      55.6027656586231,      55.60016434446491,      55.59756363510959,      55.59496353041652,      55.59236403024511,      55.58976513445483,      55.58716684290513,      55.584569155455554,      55.58197207196564,      55.579375592294944,      55.57677971630312,      55.57418444384979,      55.571589774794646,      55.56899570899736,      55.56640224631772,      55.563809386615496,      55.56121712975047,      55.558625475582495,      55.556034423971454,      55.55344397477727,      55.55085412785983,      55.54826488307915,      55.5456762402952,      55.543088199368036,      55.540500760157734,      55.53791392252438,      55.535327686328124,      55.532742051429125,      55.530157017687564,      55.527572584963714,      55.52498875311779,      55.522405522010125,      55.51982289150103,      55.51724086145087,      55.51465943172005,      55.51207860216898,      55.50949837265812,      55.50691874304798,      55.504339713199045,      55.50176128297193,      55.49918345222717,      55.49660622082542,      55.4940295886273,      55.49145355549353,      55.488878121284806,      55.486303285861894,      55.48372904908556,      55.48115541081664,      55.47858237091596,      55.47600992924441,      55.473438085662906,      55.470866840032386,      55.468296192213835,      55.46572614206825,      55.46315668945668,      55.4605878342402,      55.45801957627992,      55.455451915436974,      55.45288485157254,      55.45031838454779,      55.44775251422401,      55.44518724046242,      55.44262256312436,      55.44005848207112,      55.43749499716411,      55.43493210826468,      55.4323698152343,      55.42980811793441,      55.427247016226495,      55.424686509972105,      55.42212659903278,      55.419567283270126,      55.41700856254573,      55.4144504367213,      55.411892905658476,      55.409335969219,      55.406779627264605,      55.404223879657096,      55.40166872625828,      55.39911416692998,      55.396560201534115,      55.39400682993257,      55.391454051987296,      55.38890186756026,      55.3863502765135,      55.383799278709006,      55.3812488740089,      55.37869906227524,      55.3761498433702,      55.37360121715594,      55.37105318349464,      55.36850574224854,      55.36595889327993,      55.363412636451066,      55.3608669716243,      55.358321898662,      55.35577741742653,      55.35323352778033,      55.35069022958586,      55.34814752270562,      55.34560540700208,      55.34306388233786,      55.34052294857549,      55.337982605577615,      55.335442853206864,      55.33290369132593,      55.33036511979753,      55.32782713848439,      55.32528974724929,      55.322752945955045,      55.320216734464495,      55.31768111264052,      55.315146080346,      55.312611637443865,      55.31007778379711,      55.30754451926873,      55.305011843721736,      55.3024797570192,      55.29994825902422,      55.297417349599925,      55.29488702860946,      55.29235729591603,      55.28982815138284,      55.287299594873154,      55.28477162625026,      55.28224424537746,      55.279717452118135,      55.277191246335626,      55.27466562789336,      55.27214059665479,      55.26961615248338,      55.267092295242655,      55.26456902479614,      55.2620463410074,      55.25952424374005,      55.257002732857714,      55.254481808224064,      55.25196146970281,      55.24944171715766,      55.246922550452375,      55.24440396945078,      55.24188597401667,      55.2393685640139,      55.236851739306374,      55.234335499758,      55.23181984523273,      55.22930477559455,      55.22679029070747,      55.22427639043555,      55.22176307464285,      55.21925034319348,      55.2167381959516,      55.21422663278137,      55.21171565354699,      55.20920525811269,      55.20669544634274,      55.204186218101455,      55.20167757325317,      55.19916951166221,      55.19666203319301,      55.19415513770996,      55.191648825077536,      55.18914309516021,      55.18663794782252,      55.18413338292901,      55.18162940034426,      55.179125999932886,      55.17662318155953,      55.174120945088866,      55.17161929038562,      55.16911821731452,      55.16661772574033,      55.16411781552785,      55.16161848654193,      55.159119738647426,      55.15662157170924,      55.154123985592285,      55.15162698016155,      55.149130555282014,      55.14663471081868,      55.144139446636615,      55.14164476260091,      55.13915065857668,      55.136657134429065,      55.13416419002325,      55.13167182522445,      55.129180039897896,      55.12668883390887,      55.12419820712268,      55.12170815940464,      55.11921869062014,      55.116729800634566,      55.114241489313365,      55.11175375652198,      55.109266602125906,      55.10678002599068,      55.10429402798184,      55.10180860796498,      55.09932376580573,      55.09683950136971,      55.094355814522615,      55.09187270513016,      55.089390173058085,      55.08690821817218,      55.08442684033822,      55.08194603942204,      55.07946581528954,      55.07698616780658,      55.07450709683912,      55.07202860225311,      55.06955068391454,      55.06707334168944,      55.06459657544386,      55.062120385043876,      55.05964477035561,      55.057169731245224,      55.05469526757887,      55.052221379222786,      55.04974806604319,      55.04727532790637,      55.04480316467862,      55.04233157622629,      55.039860562415726,      55.03739012311332,      55.03492025818552,      55.032450967498775,      55.02998225091957,      55.02751410831443,      55.025046539549905,      55.02257954449258,      55.020113123009075,      55.01764727496602,      55.015182000230105,      55.01271729866803,      55.01025317014653,      55.00778961453237,      55.00532663169236,      55.002864221493326,      55.000402383802125,      54.99794111848566,      54.99548042541086,      54.993020304444656,      54.99056075545405,      54.98810177830606,      54.98564337286772,      54.983185539006115,      54.980728276588366,      54.97827158548158,      54.975815465552955,      54.9733599166697,      54.97090493869903,      54.968450531508196,      54.96599669496452,      54.963543428935324,      54.961090733287946,      54.95863860788979,      54.95618705260826,      54.95373606731081,      54.95128565186493,      54.94883580613811,      54.9463865299979,      54.94393782331189,      54.94148968594765,      54.93904211777283,      54.9365951186551,      54.93414868846214,      54.93170282706169,      54.929257534321486,      54.92681281010934,      54.92436865429306,      54.92192506674049,      54.919482047319505,      54.91703959589803,      54.914597712344005,      54.91215639652539,      54.90971564831017,      54.907275467566414,      54.90483585416217,      54.90239680796553,      54.89995832884463,      54.897520416667625,      54.89508307130268,      54.89264629261804,      54.89021008048191,      54.88777443476262,      54.88533935532844,      54.88290484204773,      54.88047089478885,      54.87803751342021,      54.87560469781022,      54.873172447827365,      54.87074076334014,      54.868309644217035,      54.865879090326644,      54.863449101537526,      54.861019677718296,      54.85859081873762,      54.85616252446414,      54.85373479476659,      54.85130762951369,      54.848881028574226,      54.84645499181698,      54.84402951911078,      54.84160461032449,      54.839180265327,      54.83675648398723,      54.83433326617412,      54.83191061175667,      54.829488520603874,      54.82706699258478,      54.824646027568456,      54.822225625424004,      54.819805786020574,      54.81738650922731,      54.81496779491341,      54.81254964294809,      54.81013205320063,      54.807715025540304,      54.80529855983641,      54.8028826559583,      54.800467313775364,      54.798052533157005,      54.79563831397265,      54.79322465609178,      54.79081155938387,      54.788399023718476,      54.78598704896514,      54.78357563499345,      54.78116478167303,      54.77875448887352,      54.77634475646462,      54.773935584316014,      54.77152697229745,      54.769118920278714,      54.76671142812959,      54.76430449571991,      54.76189812291955,      54.759492309598386,      54.757087055626336,      54.75468236087336,      54.75227822520946,      54.74987464850461,      54.74747163062888,      54.74506917145233,      54.74266727084507,      54.74026592867724,      54.73786514481897,      54.73546491914048,      54.733065251512016,      54.73066614180378,      54.72826758988609,      54.72586959562927,      54.72347215890363,      54.72107527957958,      54.71867895752749,      54.716283192617816,      54.71388798472102,      54.7114933337076,      54.70909923944807,      54.706705701813,      54.70431272067297,      54.701920295898574,      54.699528427360484,      54.69713711492938,      54.69474635847595,      54.69235615787093,      54.6899665129851,      54.68757742368925,      54.685188889854196,      54.6828009113508,      54.68041348804996,      54.678026619822575,      54.675640306539606,      54.67325454807201,      ...],     {'w': array([[7.13563861]]), 'b': -22.08974647222114},     {'dw': array([[-0.01889231]]), 'db': 0.11982501271954342})  
from sklearn.linear_model import LinearRegression as LR  
lr = LR()  
model = lr.fit(X_train, y_train)  
y_pre = model.predict(X_test)  
model.coef_  
array([[8.76050748]])  
model.intercept_  
array([-32.39552265])  
from sklearn.metrics import r2_score  
r2_score(y_pre,y_test)  
#或者直接指定参数  
r2_score(y_true = y_test,y_pred = y_pre)  
  
0.5877214395051775  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

耄耄爱哈气

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值