在训练时间序列 LSTM 模型时,是否要打乱数据集通常取决于具体情况。以下是两种常见情况下的建议:
-
时间序列依赖性:如果你的时间序列数据具有内在的时间依赖性,即后续时间步骤的观测值可能会依赖于之前的观测值,那么建议不要打乱数据集。保持数据的时间顺序可以更好地捕捉到序列中的时序相关性,使模型能够学习到正确的时间模式。
-
独立的样本:如果你的时间序列数据是独立的,即观测值之间没有时间上的依赖关系或时间关系不重要,那么你可以考虑打乱数据集。通过打乱数据,可以增加样本之间的随机性,防止模型过度依赖于数据的特定排序,并帮助模型更好地泛化到新的样本上。
需要注意的是,打乱数据集可能会破坏时间序列的结构,并丢失特定的时间依赖性。因此,在进行数据打乱之前,建议先仔细考虑你的时间序列数据的性质和任务的要求。
另外,你=还可以通过交叉验证等技术来评估模型性能,并根据结果进行调整和决策。在交叉验证中,可以多次随机分割数据集并训练多个模型,以稳健地评估模型的性能,并得出相应的结论。
总而言之,是否要打乱时间序列数据集取决于数据的时间依赖性和任务的要求。仔细考虑数据的特性、尝试不同的方法,并结合实验和评估结果来确定是否打乱数据集。