遵从大小与距离的n次方成反比的力都是保守力吗?如何证明?

1. 定义和性质

保守力是指在某一力学系统中,如果某种力做功只与系统始末状态的相对位置有关,而与做功路径无关,那么这种力就被称为保守力。根据这个定义,保守力具有以下基本特征和性质:

做功与路径无关:
这是保守力的核心特征。无论物体沿着何种路径从起点移动到终点,保守力所做的功都是相同的,只取决于起点和终点的位置。

可以表示为一个标量函数的(负)梯度:
保守力可以表示为某个标量场(即势场)的梯度,且这个标量场只与位置有关。这个标量场的负值被称为势,势乘以相应的荷(如电荷、质量等)就是势能。

沿任意环路作功为零:
如果物体沿闭合路径绕行一周,保守力对物体所做的功恒为零。这是因为保守力做功只与始末位置有关,而与路径无关,所以在闭合路径上,始末位置重合,做功自然为零。

保守力的场线是闭合的:

保守力的场线(即力的方向线)是闭合的。这意味着,如果沿着场线移动,最终会回到起点。

保守力场的旋度为零:

保守力场的旋度(Curl)为零。这意味着,保守力场是一个无旋场(Irrotational Field)。

2. 大小满足与距离n次方成反比的力都是保守力?

2.1 理论证明

假设力F与距离s的n次方成反比,即F=k/snF=k/s^nF=k/sn(k为常数,n为整数)。以下证明F是保守力:

  • 构造势能函数

可以构造一个势能函数U(s),使得U(s)对s的微商的负值等于F,即−dU/ds=F-dU/ds=FdU/ds=F,如果考虑多维的情况则应该是:−∇sU(s)=F- \nabla_s U(s)=FsU(s)=F
对于F=k/snF=k/s^nF=k/sn,容易构造出满足以上条件的相应的势能函数:
当n≠1时, U(s)=−kn−1s(n−1)U(s)=-\frac{k}{n-1}s^{(n-1)}U(s)=n1ks(n1)
当n=1时, U(s)=−k∗ln(s)U(s)=-k*ln(s)U(s)=kln(s)

  • 验证环路积分

为了证明F是保守力,我们需要验证F在一个闭合路径上的线积分(即做功)为零。根据微积分中的格林公式或斯托克斯公式(对于更高维度的空间),如果F是某个标量场(即势能场)的梯度,则F在闭合路径上的线积分等于该标量场在闭合路径所包围区域上的面积分。由于势能函数U(s)的存在,且U(s)只与位置s有关,因此F是U(s)的梯度,即F=-∇U。所以,F在闭合路径上的线积分等于零,这符合保守力的定义。

  • 结论
    • 由于我们找到了与F相对应的势能函数U(s),并且验证了F在闭合路径上的线积分为零,因此我们可以得出结论:遵从力与距离的n次方成反比(n是整数)的力F是保守力。

3. 常见的保守力

重力(万有引力):
万有引力是遵从力与距离的平方成反比的力(即F∝1/s^2)。根据万有引力定律,两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。我们可以构造一个势能函数(即引力势能函数),并验证万有引力在闭合路径上的线积分为零,从而证明万有引力是保守力。

弹力:
弹簧的弹力也是一个保守力。当弹簧被拉伸或压缩时,弹力所做的功仅取决于弹簧的初始长度和最终长度,而与弹簧移动的路径无关。

静电力(电场力):
在真空中,静电力也是遵从力与距离的平方成反比的力(对于点电荷而言),我们可以类似地构造一个势能函数(即静电势能),并验证电场力在闭合路径上的线积分为零,从而证明电场力是保守力。电荷在静电力场中移动时,静电力所做的功仅取决于电荷的初始位置和最终位置,而与电荷移动的路径无关。

需要注意的是,并非所有的力都是保守力。例如,摩擦力、空气阻力等非保守力(Non-Conservative Force)所做的功与物体移动的路径有关。在分析物理问题时,需要区分保守力和非保守力,以便正确地计算功和能量。

分子力:
分子间同时存在引力和斥力,在假定分子间的相互作用具有球对称性的前提下,分子间的引力和斥力都满足与距离的n次方成反比,其中:

f斥=k1r10−13f_斥 = k \frac{1}{r^{10-13}}f=kr10131
f引=k1r7f_引 = k \frac{1}{r^{7}}f=kr71

所以,分子间的引力和斥力都是保守力,所以,在分子间也存在与其相对距离有关的势能,这就是分子势能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笨牛慢耕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值