Druid 1.2 源码导读

Apache Druid 1.2 是一个高性能、分布式的实时分析数据库,专为 OLAP(在线分析处理)场景设计,广泛应用于实时数据分析和监控。Druid 1.2 在性能、稳定性和功能上都有显著提升。以下是 Druid 1.2 源码的导读,帮助你快速理解其架构和核心实现。


1. 源码结构

Druid 1.2 的源码结构清晰,主要分为以下模块:

  • server: Druid 的核心服务模块,包括 Coordinator、Overlord、Broker、Historical 等。
  • common: 公共模块,包含工具类和通用接口。
  • core: 核心模块,包含数据存储、查询处理等核心功能。
  • extensions: 扩展模块,支持自定义扩展。
  • indexing-service: 索引服务模块,负责数据的摄入和索引。
  • processing: 数据处理模块,支持查询的执行和优化。
  • sql: SQL 模块,支持 SQL 查询。
  • test: 测试模块,包括单元测试和集成测试。

2. 核心模块

2.1 Server 模块(server/src/main/java/org/apache/druid/server)

Server 模块是 Druid 的核心服务模块,包含 Coordinator、Overlord、Broker、Historical 等。

  • Coordinator: 负责集群的元数据管理和数据分片的分配。
  • Overlord: 负责索引任务的调度和管理。
  • Broker: 负责查询的接收和分发。
  • Historical: 负责历史数据的存储和查询。
2.2 Common 模块(common/src/main/java/org/apache/druid/common)

Common 模块包含工具类和通用接口。

  • GuiceUtils: Guice 工具类,用于依赖注入。
  • JacksonUtils: Jackson 工具类,用于 JSON 的序列化和反序列化。
  • Config: 配置类,用于读取和管理配置。
2.3 Core 模块(core/src/main/java/org/apache/druid/core)

Core 模块包含数据存储、查询处理等核心功能。

  • Segment: 数据段类,表示 Druid 中的基本数据单元。
  • Query: 查询类,表示 Druid 中的查询请求。
  • StorageAdapter: 存储适配器类,负责数据的存储和读取。
2.4 Extensions 模块(extensions/src/main/java/org/apache/druid/extensions)

Extensions 模块支持自定义扩展。

  • DruidModule: Druid 模块接口,用于定义自定义扩展。
  • ExtensionLoader: 扩展加载器,负责加载和管理扩展。
2.5 Indexing Service 模块(indexing-service/src/main/java/org/apache/druid/indexing)

Indexing Service 模块负责数据的摄入和索引。

  • IndexTask: 索引任务类,表示一个索引任务。
  • TaskStorage: 任务存储类,负责索引任务的存储和管理。
  • TaskRunner: 任务运行器类,负责索引任务的执行。
2.6 Processing 模块(processing/src/main/java/org/apache/druid/processing)

Processing 模块支持查询的执行和优化。

  • QueryRunner: 查询运行器类,负责查询的执行。
  • QueryEngine: 查询引擎类,负责查询的优化和执行。
2.7 SQL 模块(sql/src/main/java/org/apache/druid/sql)

SQL 模块支持 SQL 查询。

  • SqlQuery: SQL 查询类,表示一个 SQL 查询请求。
  • SqlParser: SQL 解析器类,负责 SQL 查询的解析。
  • SqlEngine: SQL 引擎类,负责 SQL 查询的执行。
2.8 Test 模块(test/src/main/java/org/apache/druid/testing)

Test 模块包括单元测试和集成测试。

  • IntegrationTest: 集成测试类,用于测试 Druid 的集成功能。
  • UnitTest: 单元测试类,用于测试 Druid 的单元功能。

3. 启动流程

Druid 的启动流程可以分为以下几个步骤:

  1. 启动 ZooKeeper: Druid 依赖 ZooKeeper 进行集群管理,首先启动 ZooKeeper。
  2. 启动 Metadata Store: 启动元数据存储,如 MySQL 或 PostgreSQL。
  3. 启动 Coordinator: 启动 Coordinator,负责集群的元数据管理和数据分片的分配。
  4. 启动 Overlord: 启动 Overlord,负责索引任务的调度和管理。
  5. 启动 Broker: 启动 Broker,负责查询的接收和分发。
  6. 启动 Historical: 启动 Historical,负责历史数据的存储和查询。

4. 数据处理流程

Druid 的数据处理流程如下:

  1. 数据摄入: 数据通过索引任务摄入到 Druid 中,存储在 Segment 中。
  2. 数据查询: 查询请求通过 Broker 接收,分发到 Historical 或 MiddleManager 进行处理。
  3. 查询执行: Historical 或 MiddleManager 执行查询,返回结果给 Broker。
  4. 结果返回: Broker 将查询结果返回给客户端。

5. 新特性与改进

Druid 1.2 引入了以下新特性和改进:

  • 性能优化: 提升了数据摄入和查询的性能。
  • 稳定性提升: 修复了多个已知问题,提升了系统的稳定性。
  • 功能增强: 支持更多的数据源和查询功能。
  • 监控改进: 提供了更强大的监控工具,便于运维管理。

6. 调试与测试

Druid 提供了丰富的测试工具,帮助开发者进行调试和测试。

  • 单元测试: 使用 JUnit 编写的单元测试,位于 test 模块。
  • 集成测试: 使用 Druid 自带的测试框架进行集成测试。

7. 编译与运行

Druid 使用 Maven 进行构建,编译命令如下:

mvn clean install -DskipTests

编译完成后,可以通过以下命令启动 Druid 服务:

# 启动 ZooKeeper
bin/run-zookeeper

# 启动 Metadata Store
bin/run-metadata-store

# 启动 Coordinator
bin/run-coordinator

# 启动 Overlord
bin/run-overlord

# 启动 Broker
bin/run-broker

# 启动 Historical
bin/run-historical

8. 源码阅读建议

  • CoordinatorOverlord 开始: 这两个类是 Druid 的核心服务,从这里可以了解 Druid 的启动流程和任务调度。
  • 深入 SegmentQuery: 这两个类是 Druid 的核心数据结构和查询接口,理解其工作原理对理解 Druid 的整体架构非常重要。
  • 关注 IndexTaskQueryRunner: 索引任务和查询运行器是 Druid 的核心功能,理解其实现有助于理解 Druid 的数据处理和查询机制。
  • 阅读测试代码: 测试代码可以帮助你理解每个模块的功能和边界条件。

9. 参考资料

通过以上导读,你应该能够更好地理解 Druid 1.2 的源码结构和核心模块。希望这对你深入研究和开发 Druid 有所帮助!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值