Apache Druid 1.2 是一个高性能、分布式的实时分析数据库,专为 OLAP(在线分析处理)场景设计,广泛应用于实时数据分析和监控。Druid 1.2 在性能、稳定性和功能上都有显著提升。以下是 Druid 1.2 源码的导读,帮助你快速理解其架构和核心实现。
1. 源码结构
Druid 1.2 的源码结构清晰,主要分为以下模块:
- server: Druid 的核心服务模块,包括 Coordinator、Overlord、Broker、Historical 等。
- common: 公共模块,包含工具类和通用接口。
- core: 核心模块,包含数据存储、查询处理等核心功能。
- extensions: 扩展模块,支持自定义扩展。
- indexing-service: 索引服务模块,负责数据的摄入和索引。
- processing: 数据处理模块,支持查询的执行和优化。
- sql: SQL 模块,支持 SQL 查询。
- test: 测试模块,包括单元测试和集成测试。
2. 核心模块
2.1 Server 模块(server/src/main/java/org/apache/druid/server)
Server 模块是 Druid 的核心服务模块,包含 Coordinator、Overlord、Broker、Historical 等。
- Coordinator: 负责集群的元数据管理和数据分片的分配。
- Overlord: 负责索引任务的调度和管理。
- Broker: 负责查询的接收和分发。
- Historical: 负责历史数据的存储和查询。
2.2 Common 模块(common/src/main/java/org/apache/druid/common)
Common 模块包含工具类和通用接口。
- GuiceUtils: Guice 工具类,用于依赖注入。
- JacksonUtils: Jackson 工具类,用于 JSON 的序列化和反序列化。
- Config: 配置类,用于读取和管理配置。
2.3 Core 模块(core/src/main/java/org/apache/druid/core)
Core 模块包含数据存储、查询处理等核心功能。
- Segment: 数据段类,表示 Druid 中的基本数据单元。
- Query: 查询类,表示 Druid 中的查询请求。
- StorageAdapter: 存储适配器类,负责数据的存储和读取。
2.4 Extensions 模块(extensions/src/main/java/org/apache/druid/extensions)
Extensions 模块支持自定义扩展。
- DruidModule: Druid 模块接口,用于定义自定义扩展。
- ExtensionLoader: 扩展加载器,负责加载和管理扩展。
2.5 Indexing Service 模块(indexing-service/src/main/java/org/apache/druid/indexing)
Indexing Service 模块负责数据的摄入和索引。
- IndexTask: 索引任务类,表示一个索引任务。
- TaskStorage: 任务存储类,负责索引任务的存储和管理。
- TaskRunner: 任务运行器类,负责索引任务的执行。
2.6 Processing 模块(processing/src/main/java/org/apache/druid/processing)
Processing 模块支持查询的执行和优化。
- QueryRunner: 查询运行器类,负责查询的执行。
- QueryEngine: 查询引擎类,负责查询的优化和执行。
2.7 SQL 模块(sql/src/main/java/org/apache/druid/sql)
SQL 模块支持 SQL 查询。
- SqlQuery: SQL 查询类,表示一个 SQL 查询请求。
- SqlParser: SQL 解析器类,负责 SQL 查询的解析。
- SqlEngine: SQL 引擎类,负责 SQL 查询的执行。
2.8 Test 模块(test/src/main/java/org/apache/druid/testing)
Test 模块包括单元测试和集成测试。
- IntegrationTest: 集成测试类,用于测试 Druid 的集成功能。
- UnitTest: 单元测试类,用于测试 Druid 的单元功能。
3. 启动流程
Druid 的启动流程可以分为以下几个步骤:
- 启动 ZooKeeper: Druid 依赖 ZooKeeper 进行集群管理,首先启动 ZooKeeper。
- 启动 Metadata Store: 启动元数据存储,如 MySQL 或 PostgreSQL。
- 启动 Coordinator: 启动 Coordinator,负责集群的元数据管理和数据分片的分配。
- 启动 Overlord: 启动 Overlord,负责索引任务的调度和管理。
- 启动 Broker: 启动 Broker,负责查询的接收和分发。
- 启动 Historical: 启动 Historical,负责历史数据的存储和查询。
4. 数据处理流程
Druid 的数据处理流程如下:
- 数据摄入: 数据通过索引任务摄入到 Druid 中,存储在 Segment 中。
- 数据查询: 查询请求通过 Broker 接收,分发到 Historical 或 MiddleManager 进行处理。
- 查询执行: Historical 或 MiddleManager 执行查询,返回结果给 Broker。
- 结果返回: Broker 将查询结果返回给客户端。
5. 新特性与改进
Druid 1.2 引入了以下新特性和改进:
- 性能优化: 提升了数据摄入和查询的性能。
- 稳定性提升: 修复了多个已知问题,提升了系统的稳定性。
- 功能增强: 支持更多的数据源和查询功能。
- 监控改进: 提供了更强大的监控工具,便于运维管理。
6. 调试与测试
Druid 提供了丰富的测试工具,帮助开发者进行调试和测试。
- 单元测试: 使用 JUnit 编写的单元测试,位于
test
模块。 - 集成测试: 使用 Druid 自带的测试框架进行集成测试。
7. 编译与运行
Druid 使用 Maven 进行构建,编译命令如下:
mvn clean install -DskipTests
编译完成后,可以通过以下命令启动 Druid 服务:
# 启动 ZooKeeper
bin/run-zookeeper
# 启动 Metadata Store
bin/run-metadata-store
# 启动 Coordinator
bin/run-coordinator
# 启动 Overlord
bin/run-overlord
# 启动 Broker
bin/run-broker
# 启动 Historical
bin/run-historical
8. 源码阅读建议
- 从
Coordinator
和Overlord
开始: 这两个类是 Druid 的核心服务,从这里可以了解 Druid 的启动流程和任务调度。 - 深入
Segment
和Query
: 这两个类是 Druid 的核心数据结构和查询接口,理解其工作原理对理解 Druid 的整体架构非常重要。 - 关注
IndexTask
和QueryRunner
: 索引任务和查询运行器是 Druid 的核心功能,理解其实现有助于理解 Druid 的数据处理和查询机制。 - 阅读测试代码: 测试代码可以帮助你理解每个模块的功能和边界条件。
9. 参考资料
通过以上导读,你应该能够更好地理解 Druid 1.2 的源码结构和核心模块。希望这对你深入研究和开发 Druid 有所帮助!