提取一张图像的sift特征

本文介绍如何使用 VLFeat 库中的 SIFT 方法进行图像特征提取,并提供了 MATLAB 示例代码。通过调整参数,可以有效地从图像中提取关键点及其描述符。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用vl_feat中提供的sift方法进行特征提取

vl_feat的官网:https://www.vlfeat.org/

vl_sift使用说明:https://www.vlfeat.org/overview/sift.html

vl_dsift使用说明:https://www.vlfeat.org/matlab/vl_dsift.html

代码实现:

run('./vlfeat-0.9.21/toolbox/vl_setup');
I = imread("all_souls_000051.jpg");
imshow(I);

max_img_dim = 1024;
ratio = max_img_dim / max(size(I,1),size(I,2));
I = imresize(I,ratio);

I = single(rgb2gray(I));
% f是特征点区域,d是描述子
% f的每一列是一个frame,其中一列的前两个f(1:2)代表frame中心位置,
% f(3)图中圆区域的半径,代表scale,f(4)代表oritentation
[f,d] = vl_sift(I,'PeakThresh',0.04,'edgethresh',10);
H = size(I,1);
W = size(I,2);
save('sift_feature/all_souls_000001.mat','f',"W","H");

% 随机选择50个feature进行显示
% 随机置换
perm = randperm(size(f,2));
% 选取50个
sel = perm(1:50);
h1 = vl_plotframe(f(:,sel));
h2 = vl_plotframe(f(:,sel));
set(h1,'color','k','linewidth',3);
set(h2,'color','y','linewidth',2);

% 显示sift提取的描述符
h3 = vl_plotsiftdescriptor(d(:,sel),f(:,sel));
set(h3,'color','g');

binSize = 8;
magnif = 3;
Is = vl_imsmooth(I,sqrt(binSize/magnif)^2-.25);
[f1,d1] = vl_dsift(Is,'size',binSize);
f1(3,:) = binSize/magnif;
f1(4,:) = 0;
[f_,d_] = vl_sift(I,'frames',f1);
h4 = vl_plotsiftdescriptor(d_(:,20),f_(:,20));
set(h4,'color','g');

 

 

原始图像

 

vl_sift

 

vl_sift

 

vl_dsift

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林语微光

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值