【QNX+Android虚拟化方案】123 - 如何配置qnx侧GPIO_IRQ中断和PMIC_GPIO_IRQ中断

【QNX+Android虚拟化方案】123 - 如何配置qnx侧GPIO_IRQ中断和PMIC_GPIO_IRQ中断


基于原生纯净代码,自学总结 纯技术分享,不会也不敢涉项目、不泄密、不传播代码文档!!!
本文禁止转载分享 !!!
汇总链接:《【QNX+Android虚拟化方案】00 - 系列文章链接汇总
本文链接:《【QNX+Android虚拟化方案】123 - 如何配置qnx侧GPIO_IRQ中断和PMIC_GPIO_IRQ中断



TLMM gpio 操作需发调用 gpio_client 静态库:AMSS/platform/qal/clients/pmic_client/src/gpio_client.c
PMIC gpio 操作需要调用的 pmic_client 静态库:AMSS/platform/qal/clients/pmic_client/src/pm_gpio_client.c

// # qnx_easy_irq.h
#</
内容概要:本文详细探讨了基于阻尼连续可调减振器(CDC)的半主动悬架系统的控制策略。首先建立了CDC减振器的动力学模型,验证了其阻尼特性,并通过实验确认了模型的准确性。接着,搭建了1/4车辆悬架模型,分析了不同阻尼系数对悬架性能的影响。随后,引入了PID、自适应模糊PID模糊-PID并联三种控制策略,通过仿真比较它们的性能提升效果。研究表明,模糊-PID并联控制能最优地提升悬架综合性能,在平顺性稳定性间取得最佳平衡。此外,还深入分析了CDC减振器的特性,优化了控制策略,并进行了系统级验证。 适用人群:从事汽车工程、机械工程及相关领域的研究人员技术人员,尤其是对车辆悬架系统控制策略感兴趣的读者。 使用场景及目标:①适用于研究开发基于CDC减振器的半主动悬架系统的工程师;②帮助理解不同控制策略(如PID、模糊PID、模糊-PID并联)在悬架系统中的应用及其性能差异;③为优化车辆行驶舒适性稳定性提供理论依据技术支持。 其他说明:本文不仅提供了详细的数学模型仿真代码,还通过实验数据验证了模型的准确性。对于希望深入了解CDC减振器工作原理及其控制策略的读者来说,本文是一份极具价值的参考资料。同时,文中还介绍了多种控制策略的具体实现方法及其优缺点,为后续的研究实际应用提供了有益的借鉴。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小馋喵星人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值