Python数据分析之pandas统计分析基础4

这篇博客介绍了pandas中处理时间数据的类,包括Timestamp、DatetimeIndex、PeriodIndex和Timedelta。Timestamp用于将时间字符串转为标准时间,DatetimeIndex和PeriodIndex用于创建时间序列,Timedelta支持时间的加减运算。文章强调了正确处理时间数据的重要性,并给出了相关操作的实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pandas时间相关的类在这里插入图片描述

在多数情况下,对时间类型数据进行分析的前提就是将原本为字符串的时间转换为标准时间类型。pandas继承了numpy库和datetime库的时间相关模块,提供了6种时间相关的类:
在这里插入图片描述
csv文件:
csv是最通用的一种文件格式,它可以非常容易地被导入各种PC表格及数据库中。 此文件,一行即为数据表的一行。生成数据表字段用半角逗号隔开。csv文件用记事本和excel都能打开,用记事本打开显示逗号,用excel打开,没有逗号了,逗号都用来分列了,还可有Editplus打开。
虽然csv格式文件可以用Excel来打开,但是由于计算机档案数据转换的原因,会将

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

*猪耳朵*

听我说谢谢你,因为有你。。。。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值