Dinky: 实时即未来,让 Flink SQL 纵享丝滑--如何本地编译、运行

Dinky 是一个基于 Apache Flink 的实时计算平台,专注于流批一体和湖仓一体。本文介绍了如何在本地编译、运行 Dinky,包括 clone 项目、构建 MySQL 镜像、编译、运行 dinky-admin,以及如何使用 Dinky 进行 SQL 操作和数据源注册。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是Dinky

实时即未来,Dinky 为 Apache Flink 而生,让 Flink SQL 纵享丝滑。

Dinky 是一个开箱即用、易扩展,以 Apache Flink 为基础,连接 OLAP 和数据湖等众多框架的一站式实时计算平台,致力于流批一体和湖仓一体的探索与实践。

最后,Dinky 的发展皆归功于 Apache Flink 等其他优秀的开源项目的指导与成果

如何在本地编译、运行?

clone项目

git clone https://github.com/DataLinkDC/dinky.git
# 根据需要决定是否切换到指定版本或分支
# git checkout 0.8.0

构建mysql镜像

# 构建镜像
cd dinky
docker build -t d
### 使用 Dinky 提交 Flink 作业 #### 配置环境 为了通过 Dinky 平台提交 Flink 作业,需先配置好运行环境。这包括安装并启动 Dinky 服务端和客户端工具,并确保这些组件能够访问所需的 Flink 版本和支持的数据源[^1]。 #### 创建新项目或打开已有项目 登录到 Dinky 用户界面后,在界面上创建一个新的项目或者选择已有的项目来准备提交新的 Flink 作业。此过程允许用户定义项目的名称和其他元数据属性[^2]。 #### 编写 Flink SQL 或上传 JAR 文件 对于基于 SQL 的作业,可以在内置编辑器内编写标准的 Flink SQL 查询;而对于更复杂的逻辑,则可以通过上传预先编译好的 Java/Scala 应用程序 (JAR文件) 来实现自定义处理流程。值得注意的是,Dinky 对于这两种类型的作业都提供了良好的支持。 #### 设置执行参数 无论是哪种形式的任务,都需要指定一些必要的执行选项,比如输入输出路径、资源分配比例等。特别是当涉及到多个不同版本的 Flink 实例共存的情况下,还可以利用 Dinky 所提供的多版本管理特性来进行精确控制。 #### 发布与监控作业 完成上述准备工作之后,点击相应的按钮即可触发实际的提交动作。一旦成功发送给目标集群节点,就可以立即查看当前状态以及其他相关信息了——例如进度条更新、性能指标统计图表等等。此外,如果遇到任何错误情况,也可以方便地获取详细的诊断报告以便快速定位问题所在。 ```bash # 示例命令行操作用于说明如何使用CLI方式提交任务(假设已经设置了正确的环境变量) dinky-cli submit-job --project my_project_name --job-type sql --sql-file /path/to/sql/query.sql ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

enjoy编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值