python量化 双均线策略(金叉死叉)

本文介绍了一种基于双均线交叉的股票交易策略,通过金叉买入、死叉卖出的逻辑进行操作。策略在12-16年的回测中表现良好,文章提供了具体的Python代码实现,包括如何使用jqdata和akshare库进行数据处理和策略回测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#小策略,策略逻辑是在金叉时候买进,死叉时候卖出,所谓金叉死叉是两条均线的交叉,当短期均线上穿长期均线为金叉,反之为死叉

在这里插入图片描述

1、jqdata 网页端执行

#下面是策略代码及结构

# 导入函数库
from jqdata import *
# 初始化函数
def initialize(context):
     # 设定沪深300作为基准
    set_benchmark('000300.XSHG')
    # True为开启动态复权模式,使用真实价格交易
    set_option('use_real_price', True) 
    # 股票类交易手续费是:买入时佣金万分之三,卖出时佣金万分之三加千分之一印花税, 每笔交易佣金最低扣5块钱
    set_order_cost(OrderCost(open_tax=0, close_tax=0.001, \
                             open_commission=0.0003, close_commission=0.0003,\
                             close_today_commission=0, min_commission=5), type='stock')
    #华谊股票                    
    g.security='300027.XSHE'
    #设置每天运行
    run_daily(handle)
    
def handle(context):
    security=g.security
    n5=5
    n20=20  
    # 获取股票的收盘价
    close_data = attribute_history(security, n20, '1d',"close",df=False)
    print(close_data)
    # 取得过去 ma_n1 天的平均价格
    ma_n5 = close_data['close'][-n5:].mean()
    # 取得过去 ma_n2 天的平均价格
    ma_n20 = close_data['close'][-n20:].mean()
    print(ma_n5,ma_n20)
    # 取得当前的现金
    cash = context.portfolio.available_cash
    
    # 如果当前有余额
    if ma_n5 > ma_n20:
        # 用所有 cash 买入股票,order_value是买卖价值
        order_value(security, cash)
        # 记录这次买入
        log.info("Buying %s" % security)

    # 如果n5日均线小于n20日均线,并且目前有头寸
    elif ma_n5 < ma_n20 and context.portfolio.positions[security].closeable_amount > 0:
        # 全部卖出,order_target是买卖数量
        order_target(security, 0)
        # 记录这次卖出
        log.info("Selling %s" % (security))

    # 绘制n5日均线价格
    record(ma_n5=ma_n5)
    # 绘制n20日均线价格
    record(ma_n20=ma_n20)

在这里插入图片描述
在这里插入图片描述
#整体结果在12-16年回测测试结果效益不错,阿尔法贝塔最大回撤也还行,难点是在策略和框架的使用和调用,这就是这次的双均线策略记录

akshare代码离线运行

akshare文档参考:https://akshare.akfamily.xyz/

ak.stock_zh_a_spot()查具体国内沪深全部股票symbol代码
在这里插入图片描述
ak.ak.stock_hk_spot()查具体香港全部股票symbol代码;ak.stock_hk_daily(symbol=“00005”)在查具体股票每日数据

在这里插入图片描述
ak.stock_us_spot()查具体美国全部股票symbol代码;ak.stock_us_daily(symbol=“AAPL”)在查具体股票每日数据
在这里插入图片描述
在这里插入图片描述

import akshare as ak
import pandas as pd 
import matplotlib.pyplot as plt
import matplotlib.dates as mdates

# 下载上证指数数据
df = ak.stock_zh_index_daily(symbol="sh000001")



# 计算5日和10日均线
df["MA5"] = df["close"].rolling(5).mean()
df["MA10"] = df["close"].rolling(10).mean()

# 标记金叉死叉
df["signal"] = 0  
df.loc[df["MA5"]>df["MA10"],"signal"] = 1  # 金叉
df.loc[df["MA5"]<df["MA10"],"signal"] = -1 # 死叉   

# 取最近20天数据
df = df.iloc[-20:]

# 绘图
fig, ax = plt.subplots()
ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))  
ax.xaxis.set_tick_params(rotation=90) # 设置x轴刻度竖直   
ax.plot(df["date"].values, df["MA5"], "g-", label="MA5")
ax.plot(df["date"].values, df["MA10"], "r-", label="MA10")
ax.legend()  

# 标记交叉点
for i in range(len(df)):
    if df["signal"].iloc[i] > 0:     # MA5上穿MA10,金叉;用绿色三角形`g^`标记
        ax.plot(df["date"].values[i], df["close"].iloc[i], "g^")
    elif df["signal"].iloc[i] < 0:   # MA5下穿MA10,死叉;用红色三角形`rv`标记
        ax.plot(df["date"].values[i], df["close"].iloc[i], "rv")
        
plt.show()

在这里插入图片描述
在这里插入图片描述

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

loong_XL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值