大二下:概率论与数理统计复习 导航页:https://blog.csdn.net/COCO56/article/details/100152856
1. 已知随机变量X的概率密度求 f Y ( y ) f_Y(y) fY(y)
已 知 随 机 变 量 X 的 概 率 密 度 函 数 f X ( x ) = { 1 5 e − x 5 x > 0 0 , x ≤ 0 已知随机变量X的概率密度函数\LARGE f_X(x)=\left\{\begin{aligned}&\frac{1}{5}e^{-\frac{x}{5}}&x>0\\&0,&x\le0\end{aligned}\right. 已知随机变量X的概率密度函数fX(x)=⎩⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧51e−5x0,x>0x≤0 , 则 Y = 2 X + 1 的 密 度 函 数 f Y ( y ) = { 1 10 e − y − 1 10 , y > 1 0 , y ≤ 1 ‾ . ,则Y=2X+1的密度函数f_Y(y)=\underline{\LARGE\left\{\begin{aligned}&\frac{1}{10}e^{-\frac{y-1}{10}},&y>1\\&0,&y\le1\end{aligned}\right. }. ,则Y=2X+1的密度函数fY(y)=⎩⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧101e−10y−1,0,y>1y≤1.
解
:
解:
解:
∵
F
Y
(
y
)
=
P
(
Y
≤
y
)
=
P
(
2
X
+
1
≤
y
)
=
P
(
X
≤
y
−
1
2
)
=
F
X
(
y
−
1
2
)
\because F_Y(y)=P(Y\le y)=P(2X+1\le y)=P(X\le\frac{y-1}{2})=F_X(\frac{y-1}{2})
∵FY(y)=P(Y≤y)=P(2X+1≤y)=P(X≤2y−1)=FX(2y−1)
∴
f
Y
(
y
)
=
f
X
(
y
−
1
2
)
×
(
y
−
1
2
)
′
=
1
2
f
X
(
y
−
1
2
)
\therefore f_Y(y)=f_X(\frac{y-1}{2})\times(\frac{y-1}{2})'=\frac{1}{2}f_X(\frac{y-1}{2})
∴fY(y)=fX(2y−1)×(2y−1)′=21fX(2y−1)
=
{
1
2
×
1
5
e
−
y
−
1
2
5
,
y
−
1
2
>
0
0
,
y
−
1
2
≤
0
\qquad\ \ \ \ \ \LARGE =\left\{\begin{aligned}&\frac{1}{2}\times\frac{1}{5}e^{-\frac{\frac{y-1}{2}}{5}},&\frac{y-1}{2}>0\\&0,&\frac{y-1}{2}\le0\end{aligned}\right.
=⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎧21×51e−52y−1,0,2y−1>02y−1≤0
=
{
1
10
e
−
y
−
1
10
,
y
>
1
0
,
y
≤
1
\qquad\ \ \ \ \ \LARGE =\left\{\begin{aligned}&\frac{1}{10}e^{-\frac{y-1}{10}},&y>1\\&0,&y\le1\end{aligned}\right.
=⎩⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧101e−10y−1,0,y>1y≤1
2.
设
X
在
(
−
π
2
,
π
2
)
服
从
均
匀
分
布
,
求
Y
=
cos
X
的
分
布
函
数
。
设X在(-\frac{\pi}{2},\frac{\pi}{2})服从均匀分布,求Y=\cos X的分布函数。
设X在(−2π,2π)服从均匀分布,求Y=cosX的分布函数。
解
:
解:
解:
X
∼
f
X
(
x
)
=
{
1
π
,
−
π
2
<
x
<
π
2
0
,
其
他
X\sim f_X(x)=\left\{\begin{aligned} &\frac1\pi, &-\frac{\pi}{2}<x<\frac{\pi}{2}\\ &0, &其他\end{aligned}\right.
X∼fX(x)=⎩⎨⎧π1,0,−2π<x<2π其他
则
F
Y
(
y
)
=
P
{
Y
≤
y
}
=
P
{
cos
X
≤
y
}
则F_Y(y)=P\{Y\le y\}=P\{\cos X\le y\}
则FY(y)=P{Y≤y}=P{cosX≤y}
我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休。”
1
:
y
<
−
1
,
F
Y
(
y
)
=
0
1:y<-1,F_Y(y)=0
1:y<−1,FY(y)=0
2
:
y
≥
1
,
F
Y
(
y
)
=
1
2:y\ge1,F_Y(y)=1
2:y≥1,FY(y)=1
3
:
1
≤
y
<
1
,
F
Y
(
y
)
=
P
{
Y
≤
y
}
=
P
{
cos
X
≤
y
}
3:1\le y<1, F_Y(y)=P\{Y\le y\}=P\{\cos X\le y\}
3:1≤y<1,FY(y)=P{Y≤y}=P{cosX≤y}
=
P
{
0
<
X
<
π
}
\qquad\qquad\qquad\qquad\quad=P\{0<X<\pi\}
=P{0<X<π}
=
∫
0
π
1
π
d
x
\qquad\qquad\qquad\qquad\quad=\int_{0}^{\pi}\frac{1}{\pi}dx
=∫0ππ1dx
3.
4. 已知随机变量X的概率密度求 f Y ( y ) f_Y(y) fY(y)
设
随
机
变
量
X
∼
U
(
0
,
π
)
,
试
求
随
机
变
量
Y
=
sin
X
的
概
率
密
度
函
数
.
设随机变量X\sim U(0,\pi),试求随机变量Y=\sin X的概率密度函数.
设随机变量X∼U(0,π),试求随机变量Y=sinX的概率密度函数.
解
:
解:
解:
由
均
匀
分
布
U
(
a
,
b
)
的
概
率
密
度
函
数
f
(
x
)
=
{
1
b
−
a
,
a
<
x
<
b
0
,
其
他
,
由均匀分布U(a,b)的概率密度函数f(x)=\left\{\begin{aligned} &\frac{1}{b-a}, &a<x<b\\ &0, &其他\end{aligned}\right.,
由均匀分布U(a,b)的概率密度函数f(x)=⎩⎨⎧b−a1,0,a<x<b其他,
得
U
(
0
,
π
)
的
概
率
密
度
函
数
为
f
(
x
)
=
{
1
π
,
0
<
x
<
π
0
,
其
他
得U(0,\pi)的概率密度函数为f(x)=\left\{\begin{aligned} &\frac1\pi, &0<x<\pi\\ &0, &其他\end{aligned}\right.
得U(0,π)的概率密度函数为f(x)=⎩⎨⎧π1,0,0<x<π其他
∵
F
Y
(
y
)
=
P
{
Y
≤
y
}
=
P
{
sin
X
≤
y
}
=
P
{
X
≤
arcsin
y
}
=
F
X
(
arcsin
y
)
\because F_Y(y)=P\{Y\le y\}=P\{\sin X\le y\}=P\{X\le\arcsin y\}=F_X(\arcsin y)
∵FY(y)=P{Y≤y}=P{sinX≤y}=P{X≤arcsiny}=FX(arcsiny)
∴
f
Y
(
y
)
=
f
X
(
arcsin
y
)
×
(
arcsin
y
)
′
=
1
1
−
y
2
f
X
(
arcsin
y
)
\therefore \LARGE f_Y(y)=f_X(\arcsin y)\times(\arcsin y)'=\frac{1}{\sqrt{1-y^2}}f_X(\arcsin y)
∴fY(y)=fX(arcsiny)×(arcsiny)′=1−y21fX(arcsiny)
=
{
1
1
−
y
2
×
1
π
,
0
<
arcsin
y
<
π
0
,
其
他
\qquad\qquad\quad\ \ \LARGE=\left\{\begin{aligned} &\frac{1}{\sqrt{1-y^2}}\times\frac1\pi, &0<\arcsin y<\pi\\ &0, &其他\end{aligned}\right.
=⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧1−y21×π1,0,0<arcsiny<π其他
=
{
1
π
1
−
y
2
,
0
<
y
<
1
0
,
其
他
\qquad\qquad\quad\ \ \LARGE=\left\{\begin{aligned} &\frac{1}{\pi\sqrt{1-y^2}}, &0<y<1\\ &0, &其他\end{aligned}\right.
=⎩⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎧π1−y21,0,0<y<1其他