基础数学(五)——数值积分

文章详细阐述了数值积分的基本概念,包括代数精度的定义和求解、插值型求积公式如Newton-Cotes公式和梯形、Simpson公式的特性与应用。此外,讨论了高阶公式的稳定性问题、复化求积公式以及自适应步长求积法,特别是Richardson加速外推在提高精度中的作用。重点提到了二阶高斯型求积公式及其计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

考试要求
  • 给你不完整的数值积分公式,把他凑完整,找尽可能高的代数精度使其完整。
  • 要能够判定其对应代数精度。
  • 随便给的定积分,要用梯形公式或者辛普森公式计算,并计算对应有效数字
  • 能够根据对应要求,确定需要几个等分点。
  • 高斯型求积公式,仅仅考两个点的
基础概念
  • 使用被积函数在某些点的函数值的乘积的累加和,积分的近似值。
    在这里插入图片描述
  • 两个基本问题:
    • 构造:选取求积节点Xi、求积系数Ai
    • 分析:衡量精度
  • 根据积分中值定理,可以使用一个点的积分,去成功获取对应积分结果
    在这里插入图片描述
  • 衡量数值积分公式好坏的标准
    • 误差:
      • 计算实际积分和数值积分误差,通过误差来衡量。但是实际积分的结果计算不出来。
    • 公式精确成立的范围
      • 数值积分公式所适用的范围越大,越好。左矩形公式就只适用于常函数,中矩形公式使用常函数和一次函数等。
        在这里插入图片描述
代数精度(必考题)
代数精度的定义

在这里插入图片描述

  • 证明方法:
    • 依次带入1,x,x²,x³等进行判定
求代数精度的例题(期末考试数值积分第一个大题)

在这里插入图片描述

  • 求三个待定系数,需要找其满足的条件。在尽可能高的代数精度,顺次选择不同的精度进行假设,设定对应的方程。
    在这里插入图片描述
  • 方法
    • 从低次到高次,顺次假设对应的方程,然后计算出对应的方程组进行假设。
    • 若线性方程组无解,需要顺次减少最高次的方程,知道满足为止。
    • 若线性方程组解存在,且不为唯一,那就继续增加对应的限制条件。
    • 注意:一定要计算出不成立的次数为止。
数值积分公式的构造
插值型求积公式(必考题)

在这里插入图片描述
在这里插入图片描述

插值型数值积分公式定理

在这里插入图片描述

Newton-Cotes求积公式
  • 特点:Cotes 将求积系数分为和ab区间有关和无关两个部分。
    在这里插入图片描述在这里插入图片描述

在这里插入图片描述

  • Cotes的特点
    • 最低阶的cotes公式是两个点的,所有cotes公式代数精度都是大于等于一次。
      在这里插入图片描述
Cotes公式代数精度(必考)

在这里插入图片描述

  • 这里n是等分数,n个点,等分数就是n-1.六个等分点,就是五阶,代数精度就是五次。
    在这里插入图片描述

  • 五次函数,至少需要五次代数精度,所以最少需要四阶n-c公式

Cotes公式例题(必考)
梯形公式

在这里插入图片描述

  • 推导
    在这里插入图片描述

  • 截断误差
    在这里插入图片描述

  • 代数精度
    在这里插入图片描述

Simpson公式

在这里插入图片描述

在这里插入图片描述

  • 代数精度

在这里插入图片描述

  • 截断误差

在这里插入图片描述

例题(必考)
  • 考试要求:随便给一个定积分,用梯形公式或者simpson公式计算一次
    在这里插入图片描述
改进的N-C公式
N-C公式缺点
  • 高阶N-C公式不稳定,会放大误差
    在这里插入图片描述
    在这里插入图片描述
复化求积公式
  • 本质:用分段线性插值近似被积函数
复化梯形公式

在这里插入图片描述

  • 左右两端端点都用了一次,区间内的n-1点,用了两次。
    在这里插入图片描述
  • 用了n+1个点
复化Simpson公式

在这里插入图片描述

  • 用了2n+1个点
    在这里插入图片描述
  • 只能用收敛阶来衡量收敛速度。
  • 复化辛普森公式需要导数四阶连续,复化梯形公式需要导师二阶连续
复化公式计算样例(有可能会考)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

自适应步长求积法
  • 通过后验误差的来判定先验误差,从而实现对误差的判定,决定是否还要在进行加密划分。
    在这里插入图片描述
    在这里插入图片描述
Richardson加速外推
  • 复化梯形公式加速外推,变为复化Simpson公式,实现代数精度的进一步提高。
    在这里插入图片描述
  • 复化Simpson公式进一步外推,变为复化Cotes公式,进一步提高精度,减少误差
    在这里插入图片描述
  • Romberg公式
    在这里插入图片描述
例题计算(必考)
  • 能够根据误差要求,确定对应划分的阶数
    在这里插入图片描述
    在这里插入图片描述
高斯型的求积公式
  • 在代数精度意义下,理论上最优的求积公式
    在这里插入图片描述
  • 高斯点的充分必要条件
    • 求积节点的充分必要条件是,以求积节点为零点的n+1次多项式,和任何一个不超过n次的多项式,相乘之后求定积分都为零。正交多项式的零点,就是最优的高斯多项式的结果。
  • 注意,这里是n+1个点,进行分类的
    在这里插入图片描述
Legendre多项式(勒让德多项式)(必考,仅仅考两阶)

在这里插入图片描述

  • 具体推导
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
必考题(求[a,b]上的Gauss型求积公式,二阶)
  • 线性替换,这里要会,将区间变为[-1,1]
    在这里插入图片描述
    在这里插入图片描述
  • 注意:这里仅仅考两个点的高斯公式
计算定积分,使用不同的方法进行计算

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 不会单纯使用复化梯形公式,还要使用Romberg积分进行外推,尽量少的计算量的情况下,获取更高的精度
积分公式的总结

在这里插入图片描述

考试要求
  • 不完整的积分公式,在保证尽可能高精度的情况下,将其补充完整。同时会验证你构造的数值公式
  • 随便给你一个定积分,要会使用特定的方法进行计算,romberg不考,仅仅考两个点的复化梯形公式。高斯公式仅仅考两个点的高斯公式,要回计算有效数字。两个点的高斯公式要会计算,算不出来就不算,只要把计算过程写出来就行了。
  • 对于刚才算的定积分,你用cotes公式,高斯公式,分别需要几个点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值