第 1 题
以下不属于面向对象程序设计语言的是( )。
- A.
C++
B.Python
C.Java
D.C
本题共 2 分
第 2 题
以下奖项与计算机领域最相关的是( )。
- A.
奥斯卡奖
B.图灵奖
C.诺贝尔奖
D.普利策奖
本题共 2 分
第 3 题
目前主流的计算机储存数据最终都是转换成( )数据进行储存。
- A.
二进制
B.十进制
C.八进制
D.十六进制
本题共 2 分
第 4 题
以比较作为基本运算,在 NN 个数中找出最大数,最坏情况下所需要的最少的比较次数为 ( )。
- A.
N2N2
B.NN
C.N−1N−1
D.N+1N+1
本题共 2 分
第 5 题
对于入栈顺序为 a,b,c,d,ea,b,c,d,e 的序列,下列( )不是合法的出栈序列。
- A.
a,b,c,d,ea,b,c,d,e
B.e,d,c,b,ae,d,c,b,a
C.b,a,c,d,eb,a,c,d,e
D.c,d,a,e,bc,d,a,e,b
本题共 2 分
第 6 题
对于有 nn 个顶点、mm 条边的无向连通图 (m>n)(m>n),需要删掉( )条边才能使其成为一棵树。
- A.
n−1n−1
B.m−nm−n
C.m−n−1m−n−1
D.m−n+1m−n+1
本题共 2 分
第 7 题
二进制数 101.11101.11 对应的十进制数是( )。
- A.
6.5
B.5.5
C.5.75
D.5.25
本题共 2 分
第 8 题
如果一棵二叉树只有根结点,那么这棵二叉树高度为 11。请问高度为 55 的完全二叉树有 ( )种不同的形态?
- A.
16
B.15
C.17
D.32
本题共 2 分
第 9 题
表达式 a*(b+c)*da*(b+c)*d 的后缀表达式为( ),其中 ** 和 + + 是运算符。
- A.
**a+bcd**a+bcd
B.abc+*d*abc+*d*
C.abc+d**abc+d**
D.*a*+bcd*a*+bcd
本题共 2 分
第 10 题
66 个人,两个人组一队,总共组成三队,不区分队伍的编号。不同的组队情况有( )种。
- A.
10
B.15
C.30
D.20
本题共 2 分
第 11 题
在数据压缩编码中的哈夫曼编码方法,在本质上是一种( )的策略。
- A.
枚举
B.贪心
C.递归
D.动态规划
本题共 2 分
第 12 题
由 1,1,2,2,31,1,2,2,3 这五个数字组成不同的三位数有( )种。
- A.
18
B.15
C.12
D.24
本题共 2 分
第 13 题
考虑如下递归算法
solve(n)
if n<=1 return 1
else if n>=5 return n*solve(n-2)
else return n*solve(n-1)
则调用 solve(7)
得到的返回结果为( )。
- A.
105
B.840
C.210
D.420
本题共 2 分
第 14 题
以 aa 为起点,对下边的无向图进行深度优先遍历,则 b,c,d,eb,c,d,e 四个点中有可能作为最后一个遍历到的点的个数为( )。
- A.
1
B.2
C.3
D.4
本题共 2 分
第 15 题
有四个人要从 A 点坐一条船过河到 B 点,船一开始在 A 点。该船一次最多可坐两个人。 已知这四个人中每个人独自坐船的过河时间分别为 1,2,4,81,2,4,8,且两个人坐船的过河时间为两人独自过河时间的较大者。则最短( )时间可以让四个人都过河到 B 点(包括从 B 点把船开回 A 点的时间)。
- A.
14
B.15
C.16
D.17
本题共 2 分
第 16 题
二、阅读程序(程序输入不超过数组或字符串定义的范围;判断题正确填 √ ,错误填 × ;除特殊说明外,判断题 1.5 分,选择题 3 分,共计 40 分)
(1)
判断题
-
输入的 nn 等于 10011001 时,程序不会发生下标越界。( )
-
输入的 a[i]a[i] 必须全为正整数,否则程序将陷入死循环。( )
-
当输入为
5 2 11 9 16 10
时,输出为3 4 3 17 5
。( ) -
当输入为
1 511998
时,输出为18
。( ) -
将源代码中
g
函数的定义(14∼1714∼17 行)移到 main 函数的后面,程序可以正常编译运行。( )
单选题
- 当输入为
2 -65536 2147483647
时,输出为( )。
A. 65532 33
B. 65552 32
C. 65535 34
D. 65554 33
- 1. A.
正确
B.错误
- 2. A.
正确
B.错误
- 3. A.
正确
B.错误
- 4. A.
正确
B.错误
- 5. A.
正确
B.错误
- 6. A.
B.65532 33
C.65552 32
D.65535 34
65554 33
本题共 10.5 分
第 17 题
(2)
判断题
-
输出的第二行一定是由小写字母、大写字母、数字和 ++、 //、== 构成的字符串。( )
-
可能存在输入不同,但输出的第二行相同的情形。( )
-
输出的第一行为 -1-1。( )
单选题
-
设输入字符串长度为 nn,
decode
函数的时间复杂度为( ) -
当输入为 Y3NxY3Nx 时,输出的第二行为()。
-
(3.5 分)当输入为 Y2NmIDIwMjE=Y2NmIDIwMjE= 时,输出的第二行为( )。
- 1. A.
正确
B.错误
- 2. A.
正确
B.错误
- 3. A.
正确
B.错误
- 4. A.
O(n)O(n)
B.O(n)O(n)
C.O(nlogn)O(nlogn)
D.O(n2)O(n2)
- 5. A.
B.csp
C.csq
D.CSP
Csp
- 6. A.
B.ccf2021
C.ccf2022
D.ccf 2021
ccf 2022
本题共 14 分
第 18 题
(3)
假设输入的 xx 是不超过 10001000 的自然数,完成下面的判断题和单选题:
判断题
-
若输入不为 11,把第 13 行删去不会影响输出的结果。( )
-
(2 分) 第 25 行的
f[i] / c[i * k]
可能存在无法整除而向下取整的情况。 ( ) -
(2 分) 在执行完
init()
后,f
数组不是单调递增的,但g
数组是单调递增的。 ( )
单选题
-
init
函数的时间复杂度为( )。 -
在执行完
init()
后,f[1],f[2],f[3]…f[100]f[1],f[2],f[3]…f[100] 中有()个等于 2。 -
(4 分) 当输入为 10001000 时,输出为()。
- 1. A.
正确
B.错误
- 2. A.
正确
B.错误
- 3. A.
正确
B.错误
- 4. A.
O(n)O(n)
B.O(nlogn)O(nlogn)
C.O(nn)O(nn)
D.O(n2)O(n2)
- 5. A.
23
B.24
C.25
D.26
- 6. A.
B.15 1340
C.15 2340
D.16 2340
16 1340
本题共 15.5 分
第 19 题
三、完善程序(单选题,每小题 3 分,共计 30 分)
(1)(Josephus 问题) 有 nn 个人围成一个圈,依次标号 00 至 n−1n−1。从 00 号开始,依次 0,1,0,1,…0,1,0,1,… 交替报数,报到 11 的人会离开,直至圈中只剩下一个人。求最后剩下人的编号。
试补全模拟程序。
-
①处应填( )
A.i < n
B.c < n
C.i < n- 1
D.c < n-1
-
②处应填( )
A.i % 2 == 0
B.i % 2 == 1
C.p
D.!p
-
③处应填( )
A.i++
B.i = (i + 1) % n
C.c++
D.p ^= 1
-
④处应填( )
A.i++
B.i = (i + 1) % n
C.c++
D.p ^= 1
-
⑤处应填( )
A.i++
B.i = (i + 1) % n
C.c++
D.p ^= 1
- 1. A.
B.i < n
C.c < n
D.i < n - 1
c < n - 1
- 2. A.
B.i % 2 == 0
C.i % 2 == 1
D.p
!p
- 3. A.
B.i++
C.i = (i + 1) % n
D.c++
p ^=1
- 4. A.
B.i++
C.i = (i + 1) % n
D.c++
p ^=1
- 5. A.
B.i++
C.i = (i + 1) % n
D.c++
p ^=1
本题共 15 分
第 20 题
( 2 ) (矩形计数) 平面上有 nn 个关键点,求有多少个四条边都和 xx 轴或者 yy 轴平行的矩形,满足四个顶点都是关键点。给出的关键点可能有重复,但完全重合的矩形只计一 次。
试补全枚举算法。
-
①处应填 ( )
A.a.x != b.x ? a.x < b.x : a.id < b.id
B.a.x != b.x ? a.x < b.x : a.y < b.y
C.equals(a, b) ? a.id < b.id : a.x < b.x
D.equals(a, b) ? a.id < b.id : (a.x != b.x ? a.x < b.x : a.y < b.y)
-
②处应填 ( )
A.i == 0 || cmp(A[i], A[i - 1])
B.t == 0 || equals(A[i], A[t - 1])
C.i == 0 || !cmp(A[i], A[i - 1])
D.t == 0 || !equals(A[i], A[t - 1])
-
③处应填 ( )
A.b - (b - a) / 2 + 1
B.a + b + 1) >> 1
C.(a + b) >> 1
D.a + (b - a + 1) / 2
-
④处应填 ( )
A.!cmp(A[mid], p)
B.cmp(A[mid], p)
C.cmp(p, A[mid])
D.!cmp(p, A[mid])
-
⑤处应填 ( )
A.A[i].x == A[j].x
B.A[i].id < A[j].id
C.A[i].x == A[j].x && A[i].id < A[j].id
D.A[i].x < A[j].x && A[i].y < A[j].y
- 1. A.
B.a.x != b.x ? a.x < b.x : a.id < b.id
C.a.x != b.x ? a.x < b.x : a.y < b.y
D.equals(a, b) ? a.id < b.id : a.x < b.x
equals(a, b) ? a.id < b.id : (a.x != b.x ? a.x < b.x : a.y < b.y)
- 2. A.
B.i == 0 || cmp(A[i], A[i - 1])
C.t == 0 || equals(A[i], A[t - 1])
D.i == 0 || !cmp(A[i], A[i - 1])
t == 0 || !equals(A[i], A[t - 1])
- 3. A.
B.b - (b - a) / 2 + 1
C.(a + b + 1) >> 1
D.(a + b) >> 1
a + (b - a + 1) / 2
- 4. A.
B.!cmp(A[mid], p)
C.cmp(A[mid], p)
D.cmp(p, A[mid])
!cmp(p, A[mid])
- 5. A.
B.A[i].x == A[j].x
C.A[i].id < A[j].id
D.A[i].x == A[j].x && A[i].id < A[j].id
A[i].x < A[j].x && A[i].y < A[j].y
本题共 15 分