117. 填充每个节点的下一个右侧节点指针 II
难度: 中等
来源: 每日一题 2023.11.03
给定一个二叉树:
struct Node {
int val;
Node *left;
Node *right;
Node *next;
}
填充它的每个 next
指针,让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点,则将 next
指针设置为 NULL
。
初始状态下,所有 next
指针都被设置为 NULL
。
示例 1:
输入:root = [1,2,3,4,5,null,7]
输出:[1,#,2,3,#,4,5,7,#]
解释:给定二叉树如图 A 所示,你的函数应该填充它的每个 next 指针,以指向其下一个右侧节点,如图 B 所示。序列化输出按层序遍历顺序(由 next 指针连接),'#' 表示每层的末尾。
示例 2:
输入:root = []
输出:[]
提示:
-
树中的节点数在范围
[0, 6000]
内 -
-100 <= Node.val <= 100
进阶:
你只能使用常量级额外空间。
使用递归解题也符合要求,本题中递归程序的隐式栈空间不计入额外空间复杂度。
/*
// Definition for a Node.
class Node {
public int val;
public Node left;
public Node right;
public Node next;
public Node() {}
public Node(int _val) {
val = _val;
}
public Node(int _val, Node _left, Node _right, Node _next) {
val = _val;
left = _left;
right = _right;
next = _next;
}
};
*/
class Solution {
public Node connect(Node root) {
}
}
分析与题解
-
层序遍历
这个题目实际上就是层序遍历的变形题, 我们在层序遍历的过程, 根据具体情况添加
next
节点即可.当然了, 有一些边界条件需要处理, 比如当前二叉树为空, 直接返回空即可.
if(root == null) { return root; }
再比如每一层的最后一个节点的
next节点
一定是空节点.if (i == length - 1) { node.next = null; }
然后, 我们正常的进行层序遍历即可.
while(!deque.isEmpty()) { int length = deque.size(); Node preNode = null; for(int i = 0; i < length; i++) { Node node = deque.poll(); if (i == length - 1) { node.next = null; } if (preNode != null) { preNode.next = node; } if (node.left != null) {deque.offer(node.left);} if (node.right != null) {deque.offer(node.right);} preNode = node; } }
接下来, 我们就看一下整体的题解过程.
/* // Definition for a Node. class Node { public int val; public Node left; public Node right; public Node next; public Node() {} public Node(int _val) { val = _val; } public Node(int _val, Node _left, Node _right, Node _next) { val = _val; left = _left; right = _right; next = _next; } }; */ class Solution { public Node connect(Node root) { // 二叉树的层序遍历的变形题 if(root == null) { return root; } Deque<Node> deque = new ArrayDeque<>(); deque.offer(root); while(!deque.isEmpty()) { int length = deque.size(); Node preNode = null; for(int i = 0; i < length; i++) { Node node = deque.poll(); if (i == length - 1) { node.next = null; } if (preNode != null) { preNode.next = node; } if (node.left != null) {deque.offer(node.left);} if (node.right != null) {deque.offer(node.right);} preNode = node; } } return root; } }
复杂度分析:
- 时间复杂度: O(n), 循环遍历的时间复杂度与二叉树的节点成线性关系
- 空间复杂度: O(n), 队列所需要的时间复杂度与二叉树的节点成线性关系
结果如下所示.