Python-实现杰卡德距离

本文介绍杰卡德距离及其相似性计算方法,并提供Python实现代码。杰卡德距离用于衡量两个集合间的差异性,是杰卡德相似系数的补集。文章通过实例详细解释了其定义与应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

NLP-字符串相似性计算、集合相似性度量


提示:以下是本篇文章正文内容,下面案例可供参考

一、杰卡德距离是什么?

杰卡德距离(Jaccard Distance) 是用来衡量两个集合差异性的一种指标,它是杰卡德相似系数的补集,被定义为1减去Jaccard相似系数。而杰卡德相似系数(Jaccard similarity coefficient),也称杰卡德指数(Jaccard Index),是用来衡量两个集合相似度的一种指标。

定义

Jaccard相似指数用来度量两个集合之间的相似性,它被定义为两个集合交集的元素个数除以并集的元素个数。
在这里插入图片描述
Jaccard距离用来度量两个集合之间的差异性,它是Jaccard的相似系数的补集,被定义为1减去Jaccard相似系数。
在这里插入图片描述

二、Python实现

代码如下:

# -*- encoding:utf-8 -*-
import jieba

def Jaccard(model, reference):  # terms_reference为源句子,terms_model为候选句子
    terms_reference = jieba.cut(reference)  # 默认精准模式
    terms_model = jieba.cut(model)
    grams_reference = set(terms_reference)  # 去重;如果不需要就改为list
    grams_model = set(terms_model)
    temp = 0
    for i in grams_reference:
        if i in grams_model:
            temp = temp + 1
    fenmu = len(grams_model) + len(grams_reference) - temp  # 并集
    try:
        jaccard_coefficient = float(temp / fenmu)  # 交集
    except ZeroDivisionError:
        print(model, reference)
        return 0
    else:
        return jaccard_coefficient
以上就是今天分享的内容,本文仅仅简单介绍了杰卡德距离的Python版实现,希望可以帮到大家。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

别None了

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值