前言
NLP-字符串相似性计算、集合相似性度量
提示:以下是本篇文章正文内容,下面案例可供参考
一、杰卡德距离是什么?
杰卡德距离(Jaccard Distance) 是用来衡量两个集合差异性的一种指标,它是杰卡德相似系数的补集,被定义为1减去Jaccard相似系数。而杰卡德相似系数(Jaccard similarity coefficient),也称杰卡德指数(Jaccard Index),是用来衡量两个集合相似度的一种指标。
定义
Jaccard相似指数用来度量两个集合之间的相似性,它被定义为两个集合交集的元素个数除以并集的元素个数。
Jaccard距离用来度量两个集合之间的差异性,它是Jaccard的相似系数的补集,被定义为1减去Jaccard相似系数。
二、Python实现
代码如下:
# -*- encoding:utf-8 -*-
import jieba
def Jaccard(model, reference): # terms_reference为源句子,terms_model为候选句子
terms_reference = jieba.cut(reference) # 默认精准模式
terms_model = jieba.cut(model)
grams_reference = set(terms_reference) # 去重;如果不需要就改为list
grams_model = set(terms_model)
temp = 0
for i in grams_reference:
if i in grams_model:
temp = temp + 1
fenmu = len(grams_model) + len(grams_reference) - temp # 并集
try:
jaccard_coefficient = float(temp / fenmu) # 交集
except ZeroDivisionError:
print(model, reference)
return 0
else:
return jaccard_coefficient
以上就是今天分享的内容,本文仅仅简单介绍了杰卡德距离的Python版实现,希望可以帮到大家。