Python实现杨氏矩阵搜索算法

本文介绍了一种在杨氏矩阵中高效查找特定数值的方法。杨氏矩阵是一种特殊矩阵,其每一行从左到右递增,每一列从上到下递增。文中详细解释了如何利用这一特性来设计一种时间复杂度低于O(N)的搜索算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

杨氏矩阵:

杨氏矩阵,是对组合表示理论和舒伯特演算很有用的工具。它提供了一种方便的方式来描述对称和一般线性群的群表示,并研究它们的性质。有一个二维数组.
数组的每行从左到右是递增的,每列从上到下是递增的. 在这样的数组中查找一个数字是否存在。 时间复杂度小于O(N);


Python实现:


def matrix_search(x, y):
    rows = len(x)
    cols = len(x[0])
    i = 0
    j = cols - 1
    while i < rows and j >= 0:
        if x[i][j] == y:
            return True
        elif matrix[i][j] < y:
            i += 1
        else:
            j -= 1
    return False

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

别None了

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值