Leetcode DFS-分割回文串

本文深入探讨了如何通过递归深度优先搜索算法,解决字符串的回文串分割问题,详细介绍了从首个回文子串的寻找,到剩余子串递归分析的全过程,旨在帮助读者理解并掌握这一算法的核心思想。

题目描述

给定一个字符串s,分割s使得s的每一个子串都是回文串

返回所有的回文分割结果。(注意:返回结果的顺序需要和输入字符串中的字母顺序一致。)

例如:给定字符串s="aab",

返回

  [↵    ["aa","b"],↵    ["a","a","b"]↵  ]

 

思路:

对于s  依次分析第一个可以分割出的回文子串 

剩余的子串递归分析下去,直到结束,完成一次结果搜索

class Solution {
public:
    vector<vector<string>> partition(string s) {
    
        vector<string> cur_res;
        vector<vector<string>> res;
         if(s=="")
             return res;
        dfs(s,cur_res,res);
        return res; 
    } 
    bool Can(string s)
    {        
        return s==string(s.rbegin(),s.rend());//判断是否为回文串     
    } 
    void dfs(string s,vector<string>& cur_res,vector<vector<string>>& res)
    {
        if(s=="") //说明已经深度搜索完一次s 
        {
            res.push_back(cur_res);// 那么在cur_res中的分割字符串组合 是一个解
        }
        for(int i=1;i<=s.size();i++)  //开始分析s第一个可以分割出的回文串
        {
            string sub_str=s.substr(0,i);//截取下来
             string str=s.substr(i,s.size());
            if(Can(sub_str))  //是回文串  那么剩下的字符串为一个子问题
            { 
                cur_res.push_back(sub_str);//将一个回文子串  压入一个回答序列中
                dfs(str,cur_res,res);
                cur_res.pop_back();//递归搜索返回后  弹出sub_str  确保循环入口的cur_res一致
            }
        }
    } 
};

 

<think>好的,我需要帮用户找到LeetCode第131题“分割回文串”的Java解决方案。首先,我得回忆这道题的要求。题目是给定一个字符串s,要求将s分割成若干子串,使得每个子串都是回文。返回所有可能的分割方案。例如,输入"aab"应该返回[["a","a","b"],["aa","b"]]。 接下来,我得考虑如何解决这个问题。通常这种需要所有可能解的情况,可以用回溯算法或者深度优先搜索(DFS)。回溯法的基本思路是尝试所有可能的分割点,然后递归处理剩下的部分,同时记录当前的路径。当处理到字符串末尾时,将当前路径加入结果列表。 然后,我需要思考如何判断回文。简单的方法是双指针法,从两端向中间检查字符是否相同。或者,可以预处理字符串,用动态规划(DP)预先计算出所有可能的回文子串,这样在回溯时可以直接查询,提高效率。这里动态规划的思路是创建一个二维数组dp,其中dp[i][j]表示s从i到j的子串是否是回文。 接下来,我需要编写代码的结构。主函数负责初始化结果列表和调用回溯函数。回溯函数需要当前的起始位置、当前路径、结果列表、字符串s以及DP表。在回溯过程中,遍历从当前起始位置到字符串末尾的所有可能的结束位置,如果当前子串是回文,则加入当前路径,并递归处理剩下的子串,之后回溯,移除当前子串,尝试下一个可能性。 现在,具体步骤分解: 1. 预处理生成DP表:使用动态规划,初始化长度为1和2的回文情况,然后逐步扩展长度。例如,dp[i][j]为true的条件是s.charAt(i)等于s.charAt(j)且dp[i+1][j-1]为true。 2. 回溯函数:从start开始,遍历end从start到s.length()-1。如果s.substring(start, end+1)是回文(通过DP表判断),则将该子串加入currentList,递归调用回溯函数处理end+1的位置。递归返回后,移除currentList的最后一项,继续循环。 3. 主函数调用回溯,并返回结果列表。 需要注意的边界情况:空字符串、单个字符、全回文字符串等。例如,当s是空时返回空列表;当s只有一个字符时,返回包含该字符的列表。 代码示例方面,先写动态规划预处理部分,然后设置回溯函数。Java中可以使用List<List<String>>来存储结果,回溯时用ArrayList来维护当前路径。 现在,我需要确保代码正确性。比如,判断回文的DP是否正确生成,回溯的递归终止条件是否正确(当start等于s长度时,将currentList加入结果)。同时,处理字符串子串时索引是否正确,例如substring(start, end+1)是否正确,因为Java的substring是前闭后开区间,所以end需要+1。 另外,测试一下示例输入是否正确。例如,输入"aab",动态规划表应该识别出"aa"是回文,这样在回溯时,当start=0,end=1时,分割出"aa",然后处理剩下的"b"。 可能的问题点:动态规划的初始化是否正确,特别是当子串长度为1和2时的处理。另外,在回溯过程中,是否正确处理了所有可能的end位置。 最后,整理代码结构,确保语法正确,并添加必要的注释。例如,主函数初始化DP,然后调用回溯函数,最后返回结果。</think>### LeetCode 131 分割回文串 Java 解决方案 #### 算法思路 采用回溯算法 + 动态规划预处理: 1. **动态规划预处理**:生成二维数组 $dp[i][j]$ 表示子串 $s[i...j]$ 是否为回文 2. **回溯剪枝**:根据预处理结果快速判断回文,递归生成所有有效分割方案 $$dp[i][j] = \begin{cases} true & \text{当 } i = j \\ s[i]=s[j] & \text{当 } j=i+1 \\ s[i]=s[j] \land dp[i+1][j-1] & \text{当 } j>i+1 \end{cases}$$ #### 代码实现 ```java import java.util.*; class Solution { public List<List<String>> partition(String s) { int n = s.length(); boolean[][] dp = new boolean[n][n]; List<List<String>> res = new ArrayList<>(); // 动态规划预处理 for (int len = 1; len <= n; len++) { for (int i = 0; i + len <= n; i++) { int j = i + len - 1; if (len == 1) { dp[i][j] = true; } else if (len == 2) { dp[i][j] = s.charAt(i) == s.charAt(j); } else { dp[i][j] = s.charAt(i) == s.charAt(j) && dp[i+1][j-1]; } } } backtrack(s, 0, new ArrayList<>(), res, dp); return res; } private void backtrack(String s, int start, List<String> path, List<List<String>> res, boolean[][] dp) { if (start == s.length()) { res.add(new ArrayList<>(path)); return; } for (int end = start; end < s.length(); end++) { if (dp[start][end]) { path.add(s.substring(start, end + 1)); backtrack(s, end + 1, path, res, dp); path.remove(path.size() - 1); } } } } ``` #### 复杂度分析 - 时间复杂度:$O(n \cdot 2^n)$,最坏情况需要遍历所有可能的分割方式 - 空间复杂度:$O(n^2)$,用于存储动态规划表格
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值