
Typed Protocol Pipelining

Marcin Szamotulski

13th July 2024

https://coot.me/presentations/typed-protocol-pipelining.pdf

https://coot.me/presentations/typed-protocol-pipelining.pdf

{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE EmptyCase #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE StandaloneKindSignatures #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
module Presentation.TypedProtocolPipelining where

import Data.Kind (Type)
import Data.Singletons

Ping Pong Protocol

Figure: PingPong protocol state diagram

Protocol pipelining

Figure: non-pipelined vs pipelined ping pong client

Protocol pipelining

• latency hidding

• network utilisation network is utilised best when constant
pressure is applied to avoid shrinking of the tcp window (e.g.
tcp flow control mechanism). Network utilisation is a balance
between keeping the most constrained resource busy - but
only just - too busy and delay increases and application
responsiveness can drop.

• pipelined transitions are no longer a continous flow of
matching transitions (i.e. composition of state transitions).

• pipelining must keep relative order of reqests and response
transitions, but can mix both groups.

Towards non-pipelined protocol description

data PingPong where
StIdle ::PingPong
StBusy ::PingPong
StDone::PingPong

data MessageSimplePingPong (st::PingPong) (st ′::PingPong) where
MsgSimplePing ::MessageSimplePingPong StIdle StBusy
MsgSimplePong ::MessageSimplePingPong StBusy StIdle
MsgSimpleDone::MessageSimplePingPong StIdle StDone

data SimplePingPongClient (st::PingPong) a where
SendMsg ::MessageSimplePingPong StIdle st

→(SimplePingPongClient st a)
→SimplePingPongClient StIdle a

RecvMsg :: (MessageSimplePingPong StBusy StIdle
→(SimplePingPongClient StIdle a))

→SimplePingPongClient StBusy a

ClientDone :: a
→SimplePingPongClient StDone a

Towards non-pipelined protocol description

simplePingPongClient::a→SimplePingPongClient StIdle a
simplePingPongClient a=

SendMsg MsgSimplePing
$ RecvMsg$λMsgSimplePong→
SendMsg MsgSimplePing

$ RecvMsg$λMsgSimplePong→
SendMsg MsgSimplePing

$ RecvMsg$λMsgSimplePong→
SendMsg MsgSimpleDone

$ ClientDone a

Towards pipelined protocol description

data N=Z |S N

data SimplePipelinedPingPongClient (st::PingPong) (n::N) c a where
PipelinedSendMsg ::MessageSimplePingPong StIdle st

→PingPongReceiver StBusy StIdle c
→SimplePipelinedPingPongClient StIdle (S n) c a
→SimplePipelinedPingPongClient StIdle n c a

CollectResponse :: (c→SimplePipelinedPingPongClient StIdle n c a)
→SimplePipelinedPingPongClient StIdle (S n) c a

SendMsgDone ::MessageSimplePingPong StIdle StDone
→SimplePipelinedPingPongClient StDone Z c a
→SimplePipelinedPingPongClient StIdle Z c a

PipelinedDone :: a
→SimplePipelinedPingPongClient StDone Z c a

data PingPongReceiver (st ::PingPong)
(st′::PingPong) c where

RecvPipelinedMsg :: (MessageSimplePingPong StBusy StIdle→c)
→PingPongReceiver StBusy StIdle c

Towards pipelined protocol description

simplePipelinedPingPongClient
:: a -- fixed result, for simplicity
→ c -- fixed collected value, for simplicity
→ SimplePipelinedPingPongClient StIdle Z c a

simplePipelinedPingPongClient a c=
PipelinedSendMsg
MsgSimplePing
(RecvPipelinedMsg $λMsgSimplePong→c)
(PipelinedSendMsg
MsgSimplePing
(RecvPipelinedMsg$λMsgSimplePong→c)
(CollectResponse
$λ →CollectResponse
$λ →SendMsgDone MsgSimpleDone
$ PipelinedDone a
)

)

Towards pipelined protocol description

Branching in PipelinedSendMsg requires that the interpretation of
SimplePipelinedPingPongClient needs to concurrent execution:

PipelinedSendMsg ::MessageSimplePingPong StIdle st
→PingPongReceiver StBusy StIdle c
→SimplePipelinedPingPongClient StIdle (S n) c a
→SimplePipelinedPingPongClient StIdle n c a

Typed Protocol Description
Protocol Type Class

data Agency where
ClientAgency ::Agency
ServerAgency ::Agency
NobodyAgency ::Agency

Protocol type class provides messages and state type family.

class Protocol ps where
data Message ps (st::ps) (st ′::ps)
type StateAgency (st::ps)::Agency

instance Protocol PingPong where
data Message PingPong from to where

MsgPing ::Message PingPong StIdle StBusy
MsgPong ::Message PingPong StBusy StIdle
MsgDone::Message PingPong StIdle StDone

type StateAgency StIdle =ClientAgency
type StateAgency StBusy=ServerAgency
type StateAgency StDone=NobodyAgency

Typed Protocol Description
Relative Agency

data PeerRole=AsClient|AsServer

data RelativeAgency where
WeHaveAgency ::RelativeAgency
TheyHaveAgency ::RelativeAgency
NobodyHasAgency ::RelativeAgency

type Relative::PeerRole→Agency→RelativeAgency
type family Relative pr a where

Relative AsClient ClientAgency =WeHaveAgency
Relative AsClient ServerAgency =TheyHaveAgency
Relative AsClient NobodyAgency =NobodyHasAgency

Relative AsServer ClientAgency =TheyHaveAgency
Relative AsServer ServerAgency =WeHaveAgency
Relative AsServer NobodyAgency=NobodyHasAgency

Typed Protocol Description
Relative Agency

Type equality for RelativeAgency which also carries information about
agency.

type ReflRelativeAgency
:: Agency→RelativeAgency→RelativeAgency→Type

data ReflRelativeAgency a r r ′ where
ReflClientAgency ::ReflRelativeAgency ClientAgency r r
ReflServerAgency ::ReflRelativeAgency ServerAgency r r
ReflNobodyAgency ::ReflRelativeAgency NobodyAgency r r

An evidence that both relative agencies are equal to ’NobodyHasAgency’.

type ReflNobodyHasAgency
:: RelativeAgency→RelativeAgency→Type

data ReflNobodyHasAgency ra ra′ where
ReflNobodyHasAgency ::ReflNobodyHasAgency

NobodyHasAgency
NobodyHasAgency

Typed Protocol Description
Relative Agency

A type family which swaps the client and server roles.

type FlipAgency ::PeerRole→PeerRole
type family FlipAgency pr where
FlipAgency AsClient=AsServer
FlipAgency AsServer=AsClient

Exclusion Lemmas
Agency

Exclusion Lemmas
Relative Agency

A proof that if both Relative pr a and Relative (FlipAgency pr) a are
equal then nobody has agency. In particual this lemma excludes the
possibility that client and server has agency at the same state.

exclusionLemma ClientAndServerHaveAgency
:: ∀pr ::PeerRole (a::Agency) (ra::RelativeAgency).
SingPeerRole pr

→ReflRelativeAgency a ra (Relative (pr) a)
→ReflRelativeAgency a ra (Relative (FlipAgency pr) a)
→ReflNobodyHasAgency (Relative (pr) a)

(Relative (FlipAgency pr) a)

exclusionLemma ClientAndServerHaveAgency
SingAsClient ReflNobodyAgency ReflNobodyAgency
=ReflNobodyHasAgency

exclusionLemma ClientAndServerHaveAgency
SingAsServer ReflNobodyAgency ReflNobodyAgency
=ReflNobodyHasAgency

Exclusion Lemmas
Relative Agency

A proof that if one side has terminated, then the other side terminated as well.

terminationLemma 1
:: SingPeerRole pr
→ReflRelativeAgency a ra (Relative (pr) a)
→ReflRelativeAgency a NobodyHasAgency (Relative (FlipAgency pr) a)
→ReflNobodyHasAgency (Relative (pr) a)

(Relative (FlipAgency pr) a)
terminationLemma 1

SingAsClient ReflNobodyAgency ReflNobodyAgency
=ReflNobodyHasAgency

terminationLemma 1
SingAsServer ReflNobodyAgency ReflNobodyAgency

=ReflNobodyHasAgency

Exclusion Lemmas
Relative Agency

terminationLemma 2
:: SingPeerRole pr
→ReflRelativeAgency a ra (Relative (FlipAgency pr) a)
→ReflRelativeAgency a NobodyHasAgency (Relative (pr) a)
→ReflNobodyHasAgency (Relative (FlipAgency pr) a)

(Relative (pr) a)
terminationLemma 2

SingAsClient ReflNobodyAgency ReflNobodyAgency
=ReflNobodyHasAgency

terminationLemma 2
SingAsServer ReflNobodyAgency ReflNobodyAgency

=ReflNobodyHasAgency

Protocol Application API
singletons

data Trans ps where
Tr ::∀ps.ps→ps→Trans ps

data Queue ps where
Empty ::Queue ps
Cons ::Trans ps→Queue ps→Queue ps

type (◁) ::Trans ps→Queue ps→Queue ps
type a ◁ as=Cons a as
infixr 5 ◁

type (▷) ::Queue ps→Trans ps→Queue ps
type family as ▷ b where

Empty ▷ b=Cons b Empty
(a ◁ as) ▷ b=a ◁ (as ▷ b)

infixr 5 ▷

Protocol Application API
deep embedding: non-pipelined primitives

data Pipelined=NonPipelined |Pipelined
data Peer ps
(pr ::PeerRole)
(pl ::Pipelined)
(q::Queue ps)
(st::ps) m a where

Effect ::m (Peer ps pr pl q st m a)
→Peer ps pr pl q st m a

Done :: SingI st
⇒(ReflRelativeAgency (StateAgency st)

NobodyHasAgency
(Relative pr (StateAgency st)))

→a
→Peer ps pr pl Empty st m a

Protocol Application API
deep embedding: non-pipelined primitives

Send a message (non-pipelined) and continue in a new state. Requires a
proof that the sender has agency (WeHaveAgency).

Yield :: SingI st
⇒(ReflRelativeAgency (StateAgency st)

WeHaveAgency
(Relative pr (StateAgency st)))

→Message ps st st ′

→Peer ps pr pl Empty st ′ m a
→Peer ps pr pl Empty st m a

Receive a message (non-pipelined), and continue at a new state. Requires
an evidence that the remote side has agency (TheyHaveAgency).

Await :: SingI st
⇒(ReflRelativeAgency (StateAgency st)

TheyHaveAgency
(Relative pr (StateAgency st)))

→(∀st ′.Message ps st st ′→Peer ps pr pl Empty st ′ m a)
→Peer ps pr pl Empty st m a

Protocol Application API
deep embedding: pipelined primitives

Pipeline a message, register the expected transition in the queue of
suspended transitions, and continue possibly pipelining more messages.

YieldPipelined
:: (SingI st,SingI st ′)
⇒(ReflRelativeAgency (StateAgency st)

WeHaveAgency
(Relative pr (StateAgency st)))

→Message ps st st ′

→Peer ps pr Pipelined (q ▷ Tr st ′ st ′′) st ′′ m a
→Peer ps pr Pipelined (q) st m a

Protocol Application API
deep embedding: pipelined primitives

Receive a message as part of suspended transition. It requires an
evidence that the remote side has agency for the state st ′.

Collect
:: SingI st ′

⇒(ReflRelativeAgency (StateAgency st ′)
TheyHaveAgency
(Relative pr (StateAgency st ′)))

→Maybe (Peer ps pr Pipelined (Tr st ′ st ′′ ◁ q) st m a)
→(∀stNext.Message ps st ′ stNext

→Peer ps pr Pipelined (Tr stNext st ′′ ◁ q) st m a)
→Peer ps pr Pipelined (Tr st ′ st ′′ ◁ q) st m a

Eliminate an identity transition from the front of the queue.

CollectDone
:: Peer ps pr Pipelined (q) st m a
→Peer ps pr Pipelined (Tr st st ◁ q) st m a

Pipelined Ping Pong client

pingPongClientPipelined
::Peer PingPong AsClient Pipelined Empty StIdle m ()

pingPongClientPipelined
=YieldPipelined ReflClientAgency MsgPing
$ YieldPipelined ReflClientAgency MsgPing
$ YieldPipelined ReflClientAgency MsgPing
$ collect
$ collect
$ collect
$ Yield ReflClientAgency MsgDone
$ Done ReflNobodyAgency ()

where
collect :: Peer PingPong AsClient Pipelined q StIdle m ()

→Peer PingPong AsClient Pipelined
(Tr StBusy StIdle ◁ q) StIdle m ()

collect k
=Collect ReflServerAgency Nothing
$λMsgPong→CollectDone k

Ping Pong v2

newtype PingPong2=Wrap PingPong
type StIdle2 =Wrap StIdle
type StBusy2 =Wrap StBusy
type StDone2=Wrap StDone

Ping Pong v2

instance Protocol PingPong2 where
data Message PingPong2 from to where

MsgPingPong
::Message PingPong (st) (st′)
→Message PingPong2 (Wrap st) (Wrap st′)

MsgBusy
::Message PingPong2 (Wrap StBusy) (Wrap StBusy)

type StateAgency (Wrap StIdle) =StateAgency StIdle
type StateAgency (Wrap StBusy)=StateAgency StBusy
type StateAgency (Wrap StDone)=StateAgency StDone

Pipelined Ping Pong v2 Client

pingPongClientPipeliend2
::Peer PingPong2 AsClient Pipelined Empty StIdle2 m Int

pingPongClientPipeliend2
=YieldPipelined ReflClientAgency (MsgPingPong MsgPing)
$ YieldPipelined ReflClientAgency (MsgPingPong MsgPing)
$ YieldPipelined ReflClientAgency (MsgPingPong MsgPing)
$ collect 0
$ λ n1→collect n1
$ λ n2→collect n2
$ λ n3→Yield ReflClientAgency (MsgPingPong MsgDone)
$ Done ReflNobodyAgency n3

where
collect :: Int

→(Int→Peer PingPong2 AsClient Pipelined q StIdle2 m Int)
→Peer PingPong2 AsClient Pipelined

(Tr StBusy2 StIdle2 ◁ q) StIdle2 m Int
collect ! n k

=Collect ReflServerAgency Nothing
$ λmsg→case msg of

MsgBusy →collect (n + 1) k
(MsgPingPong MsgPong)→CollectDone (k n)

Non-pipelined Duality
data TerminalStates ps (pr ::PeerRole) where
TerminalStates
::∀ps pr (st::ps) (st ′::ps).

Sing st
→ReflRelativeAgency (StateAgency st)

NobodyHasAgency
(Relative (pr) (StateAgency st))

→Sing st ′

→ReflRelativeAgency (StateAgency st ′)
NobodyHasAgency
(Relative (FlipAgency pr) (StateAgency st ′))

→TerminalStates ps pr

theorem nonpipelined duality
::∀ps (pr ::PeerRole) (initSt::ps) m a b.

(Monad m,SingI pr)
⇒Peer ps (pr) NonPipelined Empty initSt m a
→Peer ps (FlipAgency pr) NonPipelined Empty initSt m b
→m (a, b,TerminalStates ps pr)

Link to the proof. The proof relies on exclusion lemmas.

https://github.com/input-output-hk/ouroboros-network/blob/coot/typed-protocols-rewrite/typed-protocols/src/Network/TypedProtocol/Proofs.hs#L83

Removing pipelining

theorem unpipeline
::∀ps (pr ::PeerRole)

(pl ::Pipelined)
(initSt::ps) m a.
Functor m

⇒[Bool]
-- interleaving choices for pipelining allowed by
-- ‘Collect‘ primitive. False values or ‘[]‘ give no
-- pipelining.

→Peer ps pr pl Empty initSt m a
→Peer ps pr NonPipelined Empty initSt m a

Link to the proof.

https://coot.me/posts/typed-protocol-pipelining.html#removing-pipelining

Pipelined Duality

theorem duality
:: ∀ps (pr ::PeerRole)

(pl ::Pipelined)
(pl ′::Pipelined)
(st ::ps) m a b.

(Monad m,SingI pr)
⇒[Bool]→[Bool]
→Peer ps (pr) pl Empty st m a
→Peer ps (FlipAgency pr) pl ′ Empty st m b
→m (a, b,TerminalStates ps pr)

theorem duality csA csB a b=
theorem nonpipelined duality (theorem unpipeline csA a)

(theorem unpipeline csB b)

Remarks

• The duality theorem relies on 1-1 encoding of protocol
messages; Non injective encodings can lead to deadlocks, or
premature termination.

• Non injective encodings are useful! A protocol that handles
simultaneous TCP open is an example.

• The presented Peer type was first discovered in Agda, and
then re-implemented in Haskell. Agda’s more expressive type
system, and quite similar syntax to Haskell, makes it ideal for
type level experiments which as in this case can lead to
simpler API.

Acknowledgement

• Alex Vieth, Well-Typed

• Duncan Coutts, Well-Typed

https://coot.me/presentations/typed-protocol-pipelinging.pdf

https://github.com/input-output-hk/ouroboros-network/tree/coot/

typed-protocols-rewrite/typed-protocols

https://well-typed.com
https://well-typed.com
https://coot.me/presentations/typed-protocol-pipelinging.pdf
https://github.com/input-output-hk/ouroboros-network/tree/coot/typed-protocols-rewrite/typed-protocols
https://github.com/input-output-hk/ouroboros-network/tree/coot/typed-protocols-rewrite/typed-protocols

