Python进行二维插值的代码

本文详细介绍了如何在Python中利用scipy.interpolate库的griddata函数进行二维插值,通过生成随机数据点、定义插值网格并执行cubic方法,最后展示了插值后的图像和散点图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在Python中,我们可以使用scipy.interpolate库中的griddata函数进行二维插值。

import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import griddata

# 创建原始数据点
x = np.random.uniform(-2, 2, 100)
y = np.random.uniform(-2, 2, 100)
z = x * np.exp(-x ** 2 - y ** 2)

# 定义插值的网格点
xi = np.linspace(-2.0, 2.0, 100)
yi = np.linspace(-2.0, 2.0, 100)

# 创建网格
xi, yi = np.meshgrid(xi, yi)

# 进行二维插值
zi = griddata((x, y), z, (xi, yi), method='cubic')

# 绘制插值后的图像
plt.imshow(zi, vmin=zi.min(), vmax=zi.max(), origin='lower',
           extent=[-2, 2, -2, 2], aspect='auto')
plt.scatter(x, y, c=z, edgecolor='k')
plt.colorbar()
plt.xlabel('X')
plt.ylabel('Y')
plt.title('2D Interpolation')
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB代码顾问

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值