MATLAB实现灰狼算法优化柔性车间调度(GWO-fjsp)

柔性车间调度是典型的N-P问题,数学模型如下:

数学模型

假设有n个工件需要在m台机器上进行加工。每个工件包含一道或多道工序,每道工序可以在多台机器上进行加工,但每道工序的加工时间随机器的不同而不同。

符号定义
  • n:工件数量
  • m:机器数量
  • O_{ij}:表示工件j的第i道工序
  • p_{ijk}:表示工序O_ij在机器k上的加工时间
  • C_{max}:表示所有工件完成加工的最大完工时间(也常称为“makespan”)
  • x_{ijk}:决策变量,当工序O_ij在机器k上加工时取1,否则取0

目标函数

柔性车间调度的常见目标是最小化最大完工时间C_{max},这可以表示为:

\text{min} \quad C_{\text{max}}

其中,C_{max}的计算依赖于具体的调度方案,即每台机器上各工序的加工顺序和开始时间。

约束条件

柔性车间调度的约束条件主要包括以下几点:

  1. 同一台机器同一时刻只能加工一个工件
    \sum_{j=1}{n} \sum_{i=1}{k_j} x_{ijk} \leq 1 \quad \forall k, t
    其中,k_j是工件j的工序数量,t表示时间。这个约束确保在任何时刻t,机器k上只有一个工件在加工。

  2. 同一工件的同一道工序在同一时刻只能被一台机器加工
    \sum_{k=1}^{m} x_{ijk} = 1 \quad \forall i, j
    这个约束确保每个工序只能在一台机器上加工。

  3. 任意工序开始加工不能中断
    调度方案中已经隐含此约束。

  4. 同一工件的工序之间存在先后约束
    即工序的顺序是预先确定的。

  5. 所有工件在零时刻都可以被加工
    这个约束表示调度从时间零点开始。

灰狼算法的流程简述如下:

灰狼算法(Grey Wolf Optimization, GWO)是一种模拟灰狼狩猎行为的优化算法。以下是灰狼算法的详细流程和关键公式:

灰狼算法流程

  1. 初始化
    • 随机生成一定数量的灰狼个体作为初始种群,并为每个灰狼分配随机的初始位置和速度。
    • 设定算法的参数,如种群大小、迭代次数、收敛因子等。
  2. 计算适应度
    • 根据问题的特定适应度函数,计算每个灰狼个体的适应度值。
  3. 更新最优解
    • 更新每个灰狼个体的个体最优解(α狼,即当前最优解)。
    • 更新全局最优解(领导狼群的最优解,由α狼、β狼和δ狼共同决定)。
  4. 更新灰狼位置和速度
    • 根据当前灰狼个体最优解和群体最优解,以及一些随机因素,更新每个灰狼的位置和速度。
    • 灰狼的位置更新模拟了灰狼狩猎过程中的搜寻、围攻、追逐和逃避行为。
  5. 迭代
    • 重复执行步骤2-4,直到满足停止条件(如达到最大迭代次数或满足预设的适应度阈值)。
  6. 输出
    • 输出全局最优解作为算法的结果。

关键公式

  1. 距离计算
    • 灰狼与猎物之间的距离:
      D = |C \cdot XP(t) - X(t)|
      其中,D 是距离,C 和 A 是系数向量,XP(t)  是猎物的位置向量, X(t) 是当前灰狼的位置向量。
  2. 系数向量
    • A 和 C 的计算:
      A = 2a \cdot r_1 - a
      C = 2 \cdot r_2
      其中,a 是影响 ( A ) 变化的收敛因子,r_1和 ( r_2 ) 是 [0, 1] 之间的随机数。
  3. 收敛因子
    • a 的计算(随着迭代次数的增加而减小):
      a = 2 \left( 1 - \frac{t}{t_{\text{max}}} \right)
      其中,t 是当前迭代次数,t_{\text{max}}是最大迭代次数。
  4. 灰狼位置更新
    • 根据α狼、β狼和δ狼的位置来更新其他灰狼的位置:
      X_1 = X_{\alpha} - A_1 \cdot D_{\alpha}
      X_2 = X_{\beta} - A_2 \cdot D_{\beta}
      X_3 = X_{\delta} - A_3 \cdot D_{\delta}
      X(t+1) = \frac{X_1 + X_2 + X_3}{3}
      其中,X_1, X_2, X_3是基于α狼、β狼和δ狼位置计算的临时位置, X(t+1)  是更新后的灰狼位置。
  5. 猎物位置更新
    • 猎物的位置(即全局最优解)由α狼、β狼和δ狼共同决定,它们的位置通过适应度值进行排序和更新。

通过以上流程和公式,灰狼算法能够模拟灰狼狩猎行为,在搜索空间中寻找最优解。

 完整代码见: https://download.csdn.net/download/corn1949/89414608

算例数据如下:

工件号工序M1M2M3M4M5M6
11345-1-1-1
12-1-110-1-1-1
13-11298-15
14-17-123-1
21-111-167-1
22-18-1-1-16
23-1-1511-113
31-1-13-1-1-1
32233-1-1-1
33-1-11045-1
3410-111-13-1
41-1-112-1-17
42899-112-1
43-1-12-1-1-1
44-1-1-11112-1
51-1-158-19
52-1-1-113128
53356-1-1-1
54-1-1-156-1
61579-1-1-1
62-1-1115-110
63-1-1-1439
64-1-1-1510-1

MATLAB主程序如下:

程序结果如下:

outcell = 

    '零件号'    '工序号'    '机器号'    '开始时间'    '结束时间'
    [    1]    [    1]    [    1]    [      5]    [      8]
    [    1]    [    2]    [    3]    [      8]    [     18]
    [    1]    [    3]    [    6]    [     22]    [     27]
    [    1]    [    4]    [    5]    [     27]    [     30]
    [    2]    [    1]    [    5]    [      0]    [      7]
    [    2]    [    2]    [    6]    [     16]    [     22]
    [    2]    [    3]    [    3]    [     22]    [     27]
    [    3]    [    1]    [    3]    [      0]    [      3]
    [    3]    [    2]    [    1]    [      3]    [      5]
    [    3]    [    3]    [    5]    [      7]    [     12]
    [    3]    [    4]    [    5]    [     15]    [     18]
    [    4]    [    1]    [    6]    [      0]    [      7]
    [    4]    [    2]    [    2]    [      7]    [     16]
    [    4]    [    3]    [    3]    [     18]    [     20]
    [    4]    [    4]    [    4]    [     20]    [     31]
    [    5]    [    1]    [    3]    [      3]    [      8]
    [    5]    [    2]    [    6]    [      8]    [     16]
    [    5]    [    3]    [    2]    [     16]    [     21]
    [    5]    [    4]    [    5]    [     21]    [     27]
    [    6]    [    1]    [    2]    [      0]    [      7]
    [    6]    [    2]    [    4]    [      7]    [     12]
    [    6]    [    3]    [    5]    [     12]    [     15]
    [    6]    [    4]    [    4]    [     15]    [     20]

>> 

  完整代码见: https://download.csdn.net/download/corn1949/89414608

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB代码顾问

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值