柔性车间调度是典型的N-P问题,数学模型如下:
数学模型
假设有n
个工件需要在m
台机器上进行加工。每个工件包含一道或多道工序,每道工序可以在多台机器上进行加工,但每道工序的加工时间随机器的不同而不同。
符号定义
n
:工件数量m
:机器数量:表示工件
j
的第i
道工序:表示工序
O_ij
在机器k
上的加工时间:表示所有工件完成加工的最大完工时间(也常称为“makespan”)
:决策变量,当工序
O_ij
在机器k
上加工时取1,否则取0
目标函数
柔性车间调度的常见目标是最小化最大完工时间,这可以表示为:
其中,的计算依赖于具体的调度方案,即每台机器上各工序的加工顺序和开始时间。
约束条件
柔性车间调度的约束条件主要包括以下几点:
-
同一台机器同一时刻只能加工一个工件:
其中,是工件
j
的工序数量,t
表示时间。这个约束确保在任何时刻t
,机器k
上只有一个工件在加工。 -
同一工件的同一道工序在同一时刻只能被一台机器加工:
这个约束确保每个工序只能在一台机器上加工。 -
任意工序开始加工不能中断:
调度方案中已经隐含此约束。 -
同一工件的工序之间存在先后约束:
即工序的顺序是预先确定的。 -
所有工件在零时刻都可以被加工:
这个约束表示调度从时间零点开始。
灰狼算法的流程简述如下:
灰狼算法(Grey Wolf Optimization, GWO)是一种模拟灰狼狩猎行为的优化算法。以下是灰狼算法的详细流程和关键公式:
灰狼算法流程
- 初始化
- 随机生成一定数量的灰狼个体作为初始种群,并为每个灰狼分配随机的初始位置和速度。
- 设定算法的参数,如种群大小、迭代次数、收敛因子等。
- 计算适应度
- 根据问题的特定适应度函数,计算每个灰狼个体的适应度值。
- 更新最优解
- 更新每个灰狼个体的个体最优解(α狼,即当前最优解)。
- 更新全局最优解(领导狼群的最优解,由α狼、β狼和δ狼共同决定)。
- 更新灰狼位置和速度
- 根据当前灰狼个体最优解和群体最优解,以及一些随机因素,更新每个灰狼的位置和速度。
- 灰狼的位置更新模拟了灰狼狩猎过程中的搜寻、围攻、追逐和逃避行为。
- 迭代
- 重复执行步骤2-4,直到满足停止条件(如达到最大迭代次数或满足预设的适应度阈值)。
- 输出
- 输出全局最优解作为算法的结果。
关键公式
- 距离计算
- 灰狼与猎物之间的距离:
其中,D 是距离,C 和 A 是系数向量,XP(t) 是猎物的位置向量, X(t) 是当前灰狼的位置向量。
- 灰狼与猎物之间的距离:
- 系数向量
- A 和 C 的计算:
其中,a 是影响 ( A ) 变化的收敛因子,和 ( r_2 ) 是 [0, 1] 之间的随机数。
- A 和 C 的计算:
- 收敛因子
- a 的计算(随着迭代次数的增加而减小):
其中,t 是当前迭代次数,是最大迭代次数。
- a 的计算(随着迭代次数的增加而减小):
- 灰狼位置更新
- 根据α狼、β狼和δ狼的位置来更新其他灰狼的位置:
其中,,
,
是基于α狼、β狼和δ狼位置计算的临时位置, X(t+1) 是更新后的灰狼位置。
- 根据α狼、β狼和δ狼的位置来更新其他灰狼的位置:
- 猎物位置更新
- 猎物的位置(即全局最优解)由α狼、β狼和δ狼共同决定,它们的位置通过适应度值进行排序和更新。
通过以上流程和公式,灰狼算法能够模拟灰狼狩猎行为,在搜索空间中寻找最优解。
算例数据如下:
工件号 | 工序 | M1 | M2 | M3 | M4 | M5 | M6 |
1 | 1 | 3 | 4 | 5 | -1 | -1 | -1 |
1 | 2 | -1 | -1 | 10 | -1 | -1 | -1 |
1 | 3 | -1 | 12 | 9 | 8 | -1 | 5 |
1 | 4 | -1 | 7 | -1 | 2 | 3 | -1 |
2 | 1 | -1 | 11 | -1 | 6 | 7 | -1 |
2 | 2 | -1 | 8 | -1 | -1 | -1 | 6 |
2 | 3 | -1 | -1 | 5 | 11 | -1 | 13 |
3 | 1 | -1 | -1 | 3 | -1 | -1 | -1 |
3 | 2 | 2 | 3 | 3 | -1 | -1 | -1 |
3 | 3 | -1 | -1 | 10 | 4 | 5 | -1 |
3 | 4 | 10 | -1 | 11 | -1 | 3 | -1 |
4 | 1 | -1 | -1 | 12 | -1 | -1 | 7 |
4 | 2 | 8 | 9 | 9 | -1 | 12 | -1 |
4 | 3 | -1 | -1 | 2 | -1 | -1 | -1 |
4 | 4 | -1 | -1 | -1 | 11 | 12 | -1 |
5 | 1 | -1 | -1 | 5 | 8 | -1 | 9 |
5 | 2 | -1 | -1 | -1 | 13 | 12 | 8 |
5 | 3 | 3 | 5 | 6 | -1 | -1 | -1 |
5 | 4 | -1 | -1 | -1 | 5 | 6 | -1 |
6 | 1 | 5 | 7 | 9 | -1 | -1 | -1 |
6 | 2 | -1 | -1 | 11 | 5 | -1 | 10 |
6 | 3 | -1 | -1 | -1 | 4 | 3 | 9 |
6 | 4 | -1 | -1 | -1 | 5 | 10 | -1 |
MATLAB主程序如下:
程序结果如下:
outcell =
'零件号' '工序号' '机器号' '开始时间' '结束时间'
[ 1] [ 1] [ 1] [ 5] [ 8]
[ 1] [ 2] [ 3] [ 8] [ 18]
[ 1] [ 3] [ 6] [ 22] [ 27]
[ 1] [ 4] [ 5] [ 27] [ 30]
[ 2] [ 1] [ 5] [ 0] [ 7]
[ 2] [ 2] [ 6] [ 16] [ 22]
[ 2] [ 3] [ 3] [ 22] [ 27]
[ 3] [ 1] [ 3] [ 0] [ 3]
[ 3] [ 2] [ 1] [ 3] [ 5]
[ 3] [ 3] [ 5] [ 7] [ 12]
[ 3] [ 4] [ 5] [ 15] [ 18]
[ 4] [ 1] [ 6] [ 0] [ 7]
[ 4] [ 2] [ 2] [ 7] [ 16]
[ 4] [ 3] [ 3] [ 18] [ 20]
[ 4] [ 4] [ 4] [ 20] [ 31]
[ 5] [ 1] [ 3] [ 3] [ 8]
[ 5] [ 2] [ 6] [ 8] [ 16]
[ 5] [ 3] [ 2] [ 16] [ 21]
[ 5] [ 4] [ 5] [ 21] [ 27]
[ 6] [ 1] [ 2] [ 0] [ 7]
[ 6] [ 2] [ 4] [ 7] [ 12]
[ 6] [ 3] [ 5] [ 12] [ 15]
[ 6] [ 4] [ 4] [ 15] [ 20]
>>