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Abstract

We consider optimal government debt maturity in a deterministic economy in

which the government can issue any arbitrary debt maturity structure and in which

bond prices are a function of the government’s current and future primary sur-

pluses. The government sequentially chooses policy, taking into account how cur-

rent choices—which impacts future policy—feed back into current bond prices. We

show that issuing consols constitutes the unique stationary optimal debt portfolio,

as it boosts government credibility to future policy and reduces the debt financing

costs.
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1 Introduction

Numerous governments across the world have extended the maturity of their public debts.

For example, since 2016, France, Indonesia, and Mexico have issued 50-year bonds, while

Austria, Israel, and Peru have issued 100-year bonds.1 The extension of the U.S. govern-

ment debt maturity has been proposed by Cochrane (2015) and Orszag et al. (2021) and

is under consideration by the U.S. Treasury.2 Arguments in favor of maturity extension

generally rest on the notion that long-term financing costs are low relative to future in-

terest rate risks. Bhandari et al. (2021) verify these insights by introducing interest rate

risk to a calibrated fiscal policy model and showing that the optimal maturity structure

is very long and takes the (approximate) form of a consol.3

In this paper, we provide an alternative rationale for the optimal issuance of long

maturities. We argue that consols are optimal because they boost government credibility

to future fiscal policy and reduce the financing costs for the government. To illustrate

this point, we consider a deterministic environment in which bond prices are a function of

the government’s current primary surplus and the path of future primary surpluses. The

government sequentially chooses taxes and any arbitrary debt issuance strategy taking

into account the impact of current policy on bond prices. Our main finding is that the

unique stationary distribution of government debt is flat, with the government owing the

same amount to the private sector at all future dates.

We establish this result in the dynamic fiscal policy model of Lucas and Stokey (1983).

This is an economy with exogenous public spending and no capital in which the govern-

ment chooses linear taxes on labor and issues public debt to finance government spending.

In this environment, if the government could commit to policy at the beginning of time,

then the choice of government debt maturity would be indeterminate. This is because any

debt maturity structure would satisfy the present value constraints of the government at

a given point in time.

We do not assume that the government commits ex-ante to policy, but we instead

consider the sequentially optimal policy. More specifically, we characterize the Markov

Perfect Competitive Equilibrium (MPCE). In our setup, the government without commit-

ment chooses taxes and debt at every date, taking into account how current policy affects

the price of bonds through expectations of future policy. Moreover, the government may

1See, e.g. Reuters (01-18-2021).
2See, e.g. Bloomberg (19-10-2021).
3The use of consols has been pursued historically, most notably by the British government during the

Industrial Revolution, when consols were the largest component of the British government’s debt (see
Mokyr (2011)).
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decide not to follow the optimal commitment policy. We characterize the entire set of

MPCE’s in a deterministic economy, including those with potentially discontinuous policy

functions both on and off the equilibrium path.4 Since we allow for any unconstrained

structure of maturity issuance, the payoff relevant state—the government’s portfolio of

inherited maturities—is an infinite-dimensional and potentially complicated object. We

focus our attention on the stationary maturity distribution that emerges when the inher-

ited portfolio of maturities equals the issued portfolio.

Our main result is that any stationary maturity distribution under lack of commitment

must be flat, with the government owing the same amount at all future dates. The fact

that a flat maturity distribution is stationary is not surprising. Under a flat maturity

distribution, the government lacking commitment can choose a tax rate to repay the debt

immediately due without rebalancing its portfolio. The chosen tax rate coincides with the

optimum under full commitment, and therefore maximizes government’s welfare. What

is less obvious is why no other maturity distribution is stationary. The reason is that a

government that inherits a non-flat maturity distribution would always take advantage

of the situation to front-load or back-load taxes in order to change interest rates. When

the government does this, the issued maturity distribution does not coincide with the

inherited one, and is therefore not stationary.

For example, suppose that the government inherits more long-term liabilities than

short-term ones. Rather than issuing the same maturity distribution as the inherited

one, the government can change taxes so as to increase short-term interest rates. This

relaxes the government budget constraint by decreasing the market value of outstanding

long-term liabilities, making the government strictly better off. The opposite is true if

the government inherits more short-term liabilities than long-term ones. In this case, a

policy that decreases short-term interest rates makes the government strictly better off

by increasing the market value of newly issued liabilities.

We apply this simple logic to analyze the behavior of the government inheriting any

infinite-dimensional maturity distribution. We show that only if the inherited maturity

distribution is flat is the government unable to take advantage of imbalances in debt

positions to relax its budget constraint. As such, any stationary maturity distribution

must be flat.

Related Literature

The main contribution of this paper is to characterize optimal fiscal policy without

4In this regard, our approach is similar in spirit to that of Cao and Werning (2018) in their analysis
of Markov equilibria in the hyperbolic consumption model.
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commitment in the deterministic case of the Lucas and Stokey (1983) model. Lucas and

Stokey (1983) argue that there is no distortion due to lack of commitment, since the

government can structure its debt maturity to guarantee commitment to optimal fiscal

policy by future governments.5 However, Debortoli et al. (2021) show that this result does

not generally hold in the same model as Lucas and Stokey (1983). As such, our analysis of

optimal fiscal policy considers the entire set of MPCE’s, not only the ones which coincide

with the commitment policy (should they exist).

Our work also contributes to a literature on optimal government debt maturity in

the absence of government commitment. We depart from this literature in two ways.

First, we consider the optimal maturity without imposing arbitrary constraints on the

bonds available to the government.6 Second, our model is most applicable to economies

where the risk of default and surprise in inflation are not salient, but the government

is still not committed to a path of taxes and debt maturity issuance.7 In this regard,

our paper is related to the quantitative analysis of Debortoli et al. (2017). We differ

from this work in two respects. First, we do not arbitrarily confine the set of bonds

available to the government, as they do. Second, we consider a deterministic economy

and ignore the presence of shocks.8 These two departures allow us to achieve exact

theoretical characterization of the stationary maturity distribution. Our finding that the

maturity distribution is exactly flat is consistent with their quantitative result that the

maturity distribution is approximately flat.

Our paper proceeds as follows. In Section 2, we describe the model. In Section 3, we

formally define an MPCE. Section 4 establishes that any stationary maturity distribution

under lack of commitment is flat. Section 5 concludes, and the Appendix provides all of

the proofs and additional results not included in the text.

5See also Alvarez et al. (2004) and Persson et al. (2006).
6Krusell et al. (2006) and Debortoli and Nunes (2013) consider a similar environment to ours in the

absence of commitment, but with only one-period bonds, for example.
7Other work considers optimal government debt maturity in the presence of default risk, for example,

Aguiar et al. (2017), Arellano and Ramanarayanan (2012), Dovis (2019), Fernandez and Martin (2015),
and Niepelt (2014), among others. Bocola and Dovis (2016) additionally consider the presence of liquidity
risk. Bigio et al. (2017) consider debt maturity in the presence of transactions costs. Arellano et al. (2013)
consider lack of commitment when surprise inflation is possible.

8Angeletos (2002), Bhandari et al. (2017), Buera and Nicolini (2004), Faraglia et al. (2010), Guibaud
et al. (2013), and Lustig et al. (2008) also consider optimal government debt maturity in the presence of
shocks, but they assume full commitment.
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2 Model

2.1 Environment

We consider an economy identical to the deterministic case of Lucas-Stokey. There are

discrete time periods t = {0, 1, ...,∞}. The resource constraint of the economy is

ct + g = nt, (1)

where ct is consumption, nt is labor, and g > 0 is government spending, which is exogenous

and constant over time.

There is a continuum of mass 1 of identical households that derive the following utility:

∞∑
t=0

βtu (ct, nt) , β ∈ (0, 1) . (2)

u (·) is strictly increasing in consumption, strictly decreasing in labor, globally concave,

and continuously differentiable. We also assume that ucc(c, c+g)+ucn(c, c+g) < 0 so that

the marginal utility of consumption is decreasing in consumption in general equilibrium.

As a benchmark, we define the first best consumption and labor
{
cfb, nfb

}
as the values

of consumption and labor that maximize u (ct, nt) subject to the resource constraint (1).

Household wages equal the marginal product of labor (which is 1 unit of consumption),

and are taxed at a linear tax rate τt. bt,k R 0 represents government debt purchased by

a representative household at t, which is a promise to repay 1 unit of consumption at

t+ k > t. qt,k is the bond price at t. At every t, the household’s allocation and portfolio{
ct, nt, {bt,k}∞k=1

}
must satisfy the household’s dynamic budget constraint:

ct +
∞∑
k=1

qt,k (bt,k − bt−1,k+1) = (1− τt)nt + bt−1,1. (3)

Bt,k R 0 represents debt issued by the government at t with a promise to repay 1 unit of

consumption at t+ k > t. At every t, government policies
{
τt, gt, {Bt,k}∞k=1

}
must satisfy

the government’s dynamic budget constraint:

gt +Bt−1,1 = τtnt +
∞∑
k=1

qt,k (Bt,k −Bt−1,k+1) .9 (4)

9We follow the same exposition as in Angeletos (2002) in which the government rebalances its debt
in every period by buying back all outstanding debt and then issuing fresh debt at all maturities. This
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The economy is closed, which means that the bonds issued by the government equal

the bonds purchased by households:

bt,k = Bt,k ∀t, k. (5)

Initial debt {B−1,k}∞k=1 = {b−1,k}∞k=1 is exogenous. We assume that there exist debt

limits to prevent Ponzi schemes:

bt,k ∈
[
b, b
]
∀t, k. (6)

In our recursive analysis, we will consider economies where these limits are not binding

along the equilibrium path. The government is benevolent and shares the same preferences

as the households in (2).

2.2 Primal Approach

We follow Lucas-Stokey by taking the primal approach to the characterization of compet-

itive equilibria, since this allows us to abstract away from bond prices and taxes. Let

{ct, nt}∞t=0 (7)

represent a sequence of consumption and labor allocations. We can establish necessary

and sufficient conditions for (7) to constitute a competitive equilibrium. The household’s

optimization problem implies the following intratemporal and intertemporal conditions,

respectively:

1− τt = −un (ct, nt)

uc (ct, nt)
and qt,k =

βkuc (ct+k, nt+k)

uc (ct, nt)
. (8)

Substitution of these conditions into the household’s dynamic budget constraint implies

the following condition:

uc (ct, nt) ct + un (ct, nt)nt +
∞∑
k=1

βkuc (ct+k, nt+k) bt,k =
∞∑
k=0

βkuc (ct+k, nt+k) bt−1,k+1. (9)

is without loss of generality. For example, if the government at t − k issues debt due at date t of size
Bt−k,k which it then holds to maturity without issuing additional debt, then all future governments at
date t− k + l for l = 1, ..., k − 1 will choose Bt−k+l,k−l = Bt−k,k, implying that Bt−1,1 = Bt−k,k.
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Forward substitution into the above equation and taking into account the absence of Ponzi

schemes implies the following implementability condition:

∞∑
k=0

βk (uc (ct+k, nt+k) ct+k + un (ct+k, nt+k)nt+k) =
∞∑
k=0

βkuc (ct+k, nt+k) bt−1,k+1. (10)

By this reasoning, if a sequence in (7) is generated by a competitive equilibrium, then

it necessarily satisfies (1) and (10). We prove in the Appendix that the converse is also

true, which leads to the below proposition that is useful for the rest of our analysis.

Lemma 1 (competitive equilibrium) A sequence (7) is a competitive equilibrium if

and only if it satisfies (1) ∀t and (10) at t = 0 given {b−1,k}∞k=1 .

Note that this result rests on the fact that the satisfaction of (10) at t = 0 guarantees

the satisfaction of (10) for all future dates, since bonds can be freely chosen so as to satisfy

(10) at all future dates for any given sequence (7).

3 Markov Perfect Competitive Equilibrium

We characterize the MPCE in which the government without commitment chooses taxes

and debt at every date, taking into account how current policy affects the price of bonds

through expectations of future policy. In this section, we formally define our equilib-

rium, and then, using the primal approach, we provide a recursive representation of the

equilibrium.

3.1 Equilibrium Definition

Formally, let Bt ≡ {Bt,k}∞k=1 and qt ≡ {qt,k}∞k=1. In every period t, the government

chooses a policy {τt,Bt} given Bt−1. Households then choose an allocation and portfolio{
ct, nt, {bt,k}∞k=1

}
. An MPCE consists of: a government strategy ρ (Bt−1) which is a

function of Bt−1; a household allocation and portfolio strategy ω (Bt−1, ρt,qt) which is a

function of Bt−1, the government policy ρt = ρ (Bt−1), and bond prices qt; and a set of

bond pricing functions
{
ϕk (Bt−1, ρt)

}∞
k=1

with qt,k = ϕk (Bt−1, ρt) ∀k ≥ 1 which depend

on Bt−1 and the government policy ρt = ρ (Bt−1). In an MPCE, these objects must satisfy

the following conditions ∀t:

1. The government strategy ρ (·) maximizes (2) given ω (·), ϕk (·) ∀k ≥ 1, and the

government budget constraint (4);
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2. The household allocation and portfolio strategy ω (·) maximizes (2) given ρ (·), ϕk (·)
∀k ≥ 1, and the household budget constraint (3), and

3. The set of bond pricing functions ϕk (·) ∀k ≥ 1 satisfy (5) given ρ (·) and ω (·).

3.2 Recursive Representation

Given our definition, an MPCE is characterized by an equilibrium consumption and labor

sequence (7) and an equilibrium debt sequence
{
{bt,k}∞k=1

}∞
t=0

, where each element at

date t depends on history only through Bt−1, the payoff relevant variables. Given this

observation, in an MPCE, one can define a function hk (·)

hk (Bt) = βkuc (ct+k, nt+k) |Bt (11)

for k ≥ 1, which equals the discounted marginal utility of consumption at t+ k given Bt

at t. This function is useful since, in choosing Bt at date t, the government must take

into account how it affects future expectations of policy, which in turn affect current bond

prices through expected future marginal utility of consumption.

Note that choosing {τt,Bt} at date t from the perspective of the government is

equivalent to choosing {ct, nt,Bt} where one can write, with some abuse of notation,

Bt = {bt,k}∞k=1, and this follows from the primal approach delineated in Section 2.2. Re-

moving the time subscript and defining B ≡ Bt−1 = {bk}∞k=1 as the inherited portfolio of

bonds, we can write the government’s problem recursively as

V (B) = max
c,n,B′

u (c, n) + βV (B′) (12)

s.t.

c+ g = n, and (13)

uc (c, n) c+ un (c, n)n− uc (c, n) b1 +
∞∑
k=1

hk (B′) (b′k − bk+1) = 0, (14)

where (14) is a recursive representation of (9). Let f (B) correspond to the solution to

(12) − (14) given V (·) and hk (·) ∀k ≥ 1. It therefore follows that the function f (·)
necessarily implies functions hk (·) ∀k ≥ 1 which satisfy (11). An MPCE is therefore

composed of functions V (·), f (·), and hk (·) ∀k ≥ 1 that are consistent with one another

and satisfy (11)− (14).

7



4 Stationary Distribution of Debt Maturity

We focus on characterizing an economy in which the debt maturity distribution is station-

ary with bt+1,k = bt,k, ∀t, k, so that government debt maturity is time-invariant. Given the

Markovian structure of the solution to the MPCE defined by (12)−(14), such a stationary

maturity distribution is associated with tax rates, consumption, and interest rates that

are constant over time. In this section, we show that any stationary maturity distribution

must be flat, with the government owing the same amount of resources to the private

sector at all future dates. To establish this result, we first impose a useful assumption in

Section 4.1. In Section 4.2, we use this assumption show that a flat maturity distribution

is stationary. Finally, in Section 4.3, we show that no other maturity distribution can be

stationary.

4.1 Preliminaries

Before proceeding with our analysis, we impose a useful assumption. Using our recursive

notation introduced in Section 3, define W ({bk}∞k=1) as the welfare of the government

under full commitment given an initial starting debt position {bk}∞k=1:

W ({bk}∞k=1) = max
{ck,nk}∞k=0

∞∑
k=0

βku (ck, nk) (15)

s.t.

ck + g = nk, and (16)
∞∑
k=0

βk (uc (ck, nk) ck + un (ck, nk)nk) =
∞∑
k=0

βkuc (ck, nk) bk+1. (17)

Given Lemma 1, the program in (15)−(17) corresponds to that of a government under

full commitment with b−1,k = bk+1.

Assumption 1. Consider the solution to (15)−(17) with bk+1 = b ∀k ≥ 0. ∀b ∈
[
b, b
]
,

if the solution exists, then the solution is unique and admits {ck, nk} = {c∗ (b) , n∗ (b)}
∀k ≥ 0, where

uc (c∗ (b) , n∗ (b)) c∗ (b) + un (c∗ (b) , n∗ (b))n∗ (b) = uc (c∗ (b) , n∗ (b)) b, (18)

and c∗ (b) + g = n∗ (b) . (19)

This assumption states that if a government under full commitment is faced with a flat
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maturity distribution, then there is a unique optimum in which the government chooses a

constant allocation of consumption and labor in the future.10 This assumption is intuitive.

Under a flat maturity distribution, every time period in the program in (15) − (17) is

identical in the objective function and in the constraint set, which suggests that the

optimal solution is a time-invariant allocation. A sufficient condition for Assumption 1 is

that the function uc (c, c+ g) (c− b) + un (c, c+ g) (c+ g) is concave in c for all b, which

is the case, for example, if the utility function satisfies is isoelastic (e.g., Werning, 2007)

and if b = 0 so that debt is non-negative.

4.2 Flat Maturity Distribution is Stationary

We begin by establishing that if the maturity distribution is flat, then it is stationary.

Lemma 2 Suppose that there exists an MPCE starting from B which satisfies bk = b ∀k
for some b ∈

[
b, b
]
. Then,

1. In all solutions to (12)− (14), c = c∗ (b) and n = n∗ (b), and

2. There exists a solution to (12)− (14) that admits b′k = b ∀k.

The first part of the lemma states that in any MPCE, if the government inherits a flat

maturity distribution with bk = b ∀k, then the unique optimal response of the govern-

ment is to choose consumption and labor that coincide with the commitment optimum.

The second part of the lemma implies that one optimal—but not necessarily uniquely

optimal—strategy for the government is to choose b′k = b ∀k so that debt is not rebal-

anced and the maturity distribution continues to be flat in the future. As such, there

exists a stationary MPCE with a flat maturity distribution. Importantly, this lemma

implies that in any MPCE for which B is a flat maturity distribution, it is necessary that

V (B) = W (B) (20)

so that there is no welfare loss for the present government due to lack of commitment by

future governments.

The logic behind this lemma is that a government inheriting a flat maturity distribu-

tion with bk = b ∀k can always decide to not rebalance its debt portfolio and to choose

10Assumption 1 requires that the solution exists. If the upper bound on individual maturities b exceeds
the highest primary surplus that can be raised at the peak of the Laffer curve, then there is no solution
under a flat maturity for some high values of debt.
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the tax rate associated with {c∗ (b) , n∗ (b)}. Forward induction on this observation com-

bined with Assumption 1 means that the government is able to achieve the commitment

optimum with this strategy while inducing allocation {c∗ (b) , n∗ (b)} in all future periods.

Note that the government can induce the commitment allocation in the future in any

MPCE, including those where the government’s continuation strategy off the equilibrium

path given off equilibrium maturities does not coincide with the commitment solution.

4.3 No Other Maturity Distribution is Stationary

We now turn to the possibility that another maturity distribution is stationary. We show

in this section that this is not possible by contradiction using an induction argument. The

first step of the induction argument establishes that if a non-flat maturity distribution

were stationary, then the debt immediately due, b1, would be necessarily equal to the

primary surplus. The second step of the induction argument establishes that if a non-flat

maturity distribution were stationary with bk equal to the primary surplus for all k ≤ m,

then bm+1 would necessarily be equal to the primary surplus. It follows then by induction

that bk equals the primary surplus for all maturities k and that the maturity distribution

is flat, leading to a contradiction.

To pursue this induction argument, we establish a preliminary result that allows us

to construct perturbations as part of the induction argument. To interpret this lemma,

observe that since consumption is constant over time under a stationary maturity distri-

bution, the price of a bond maturing in k periods is βk.

Lemma 3 Suppose that given B, there exists a solution to (12)− (14) with a stationary

maturity distribution b′k = bk ∀k and b′l 6= b′m for some l,m. Then there exists another

solution to (12)− (14) with b′k = b̂ ∀k where

b̂ =
∞∑
k=1

βk−1 (1− β) bk. (21)

This lemma states that under any MPCE with a stationary maturity distribution

that is not flat, the government can choose the same tax rate but issue a flat maturity

distribution with the same market value and achieve the same welfare. The proof of

this lemma is facilitated by Lemma 2, which characterizes the continuation equilibrium

following this choice of a flat maturity. Since current and future taxes and consumption

remain unchanged from the issuance of a flat maturity, bond prices and welfare are also

unchanged.
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Lemma 3 implies that if there exists a stationary maturity distribution that is not flat,

then the corresponding welfare is equal to that achieved under a flat maturity distribution

with the same market value. Moreover, from (20), welfare under this MPCE equals that

under commitment associated with a flat maturity distribution with the same market

value:

V (B) = W ({bk}∞k=1) |bk=b̂ ∀k =
u(c(̂b), n(̂b))

1− β
. (22)

Lemma 3 is useful since it characterizes welfare under a stationary maturity distribu-

tion that is not flat. Moreover, it allows us to consider off-equilibrium welfare following a

deviation in maturity issuance strategy by the government, which is useful for establishing

the first step of our induction argument in the next lemma.

Lemma 4 Suppose that given B, there exists a solution to (12)− (14) with a stationary

maturity distribution b′k = bk ∀k and for which {c, n} 6=
{
cfb, nfb

}
. Then, B must satisfy

b1 = b̂ for b̂ defined in (21).

This lemma states that in any stationary maturity distribution in which the tax rate

is not zero (so that consumption and labor do not equal the first best), short-term debt

b1 equals the annuitized value of total debt b̂. Therefore, the primary surplus equals the

short-term debt b1 and net debt issuance is zero.

The proof rests on showing that if the primary surplus is in excess of, or below,

this short-term debt b1, then the government can pursue a deviation from a smooth

consumption path to boost welfare. For example, if the primary surplus is in excess

of what the government immediately owes, then pursuit of a smooth consumption path

would require the government to buy back some of its long-term debt. Rather than

following a stationary debt issuance strategy, the government can back-load consumption

to increase short-term interest rates and reduce the value of the long-term debt which it

buys back. Since the deviation is beneficial, the maintenance of a stationary debt maturity

distribution is not optimal if the primary surplus exceeds b1.

If instead the primary surplus is below what the government immediately owes, then

pursuit of a smooth consumption path would require the government to issue fresh debt in

order to repay current short-term debt. Rather than following a stationary debt issuance

strategy, the government can front-load consumption to decrease short-term interest rates

and increase the value of newly issued debt. Since the deviation is beneficial, the mainte-

nance of a stationary debt maturity distribution is not optimal if the primary surplus is

below b1.
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Note that in constructing these deviations, we utilize Lemmas 2 and 3 which allow

us to characterize the change in welfare if the government issues a flat government debt

maturity today as part of its deviation. As such, we can explicitly show that these

deviations increase welfare by relaxing the government’s budget constraint.

Note that the reason why our argument does not hold under a stationary distribution

of debt maturities with zero taxes is that in this case, it is not possible to relax the

government budget constraint further.

We now use analogous arguments to establish the second step of the induction argu-

ment.

Lemma 5 Suppose that given B, there exists a solution to (12)− (14) with a stationary

maturity distribution b′k = bk ∀k and for which {c, n} 6=
{
cfb, nfb

}
. If bl = b̂ ∀l ≤ m, then

B must satisfy bm+1 = b̂ for b̂ defined in (21).

This lemma considers the stationary maturity distribution when all bond maturities

below m equal the primary surplus of the government (the annuitized value of government

debt). When this is the case, then the bond of maturity m+1 must also equal the primary

surplus of the government.

The argument, which relies on a proof by contradiction, starts from the fact that

under a stationary maturity distribution, government’s welfare satisfies (22), and thus

equals welfare under commitment with a flat maturity distribution with the same market

value. Now if the amount owed at date m + 1 does not also equal the primary surplus,

then there exists a feasible deviation from a stationary debt issuance strategy that can

increase welfare above (22), leading to a contradiction.

More specifically, if bl = b̂ ∀l ≤ m but bm+1 6= b̂, a feasible strategy for the gov-

ernment today is to continue to choose the same consumption and labor allocation today

{c(̂b), n(̂b)} but to deviate by not retrading the inherited maturities (i.e., letting the bonds

mature to next period). Such a deviation is feasible whatever the expectations of future

policy and their impact on current bond prices since the government is not rebalancing

its portfolio.

Without needing to specify the exact form of the continuation equilibrium, we can show

that this deviation must necessarily increase welfare. The argument rests on putting a

lower bound on the welfare of future governments following the deviation based on the

feasible policies at their disposal. More specifically, note that after the initial deviation,

future governments also have the opportunity to pursue the same strategy of choosing

consumption and labor equal to {c(̂b), n(̂b)} and not rebalancing the portfolio of maturi-

ties. This is true up until some future date m periods in the future. Based on this logic,

12



the welfare of the government today from pursuing the deviation must weakly exceed

m−1∑
l=0

βlu(c(̂b), n(̂b)) + βmV (B̂ (m)) (23)

where B̂ (m) satisfies b̂ (m)k = bk+m ∀k ≥ 1. Thus, for the initial deviation to be weakly

dominated, this requires (23) to be weakly exceeded by (22), so that

V (B̂ (m)) ≤ u(c(̂b), n(̂b))

1− β
. (24)

However, since bm+1 6= b̂, the arguments of Lemma 4 imply that (24) cannot hold, leading

to a contradiction. Intuitively, m periods into the future after following a strategy of

no rebalancing, the primary surplus is above or below the debt immediately due. At

this point in the future, pursuing a strategy that back-loads or front-loads consumption

strictly increases welfare relative to a smooth consumption policy with a stationary debt

issuance strategy. Therefore, the immediate deviation prior to reaching this m’th period is

beneficial, and the maintenance of a stationary debt maturity distribution is not optimal.

Proposition 1 (flat maturity) Suppose that conditional on B, there exists a solution

to (12) − (14) with a stationary maturity distribution b′k = bk ∀k and for which {c, n} 6={
cfb, nfb

}
. Then it is necessary that bk = b̂ ∀k so that the maturity distribution is flat.

This proposition represents the main result of the paper. It states that if the maturity

distribution is stationary and if the equilibrium does not entail first best consumption and

labor, then the maturity distribution is flat. The reasoning for the proposition follows

from induction arguments which appeal to Lemmas 4 and 5. Intuitively, if maturity

distribution is not flat, then there are opportunities for the government take advantage

of these imbalances to decrease the market value of its inherited portfolio or increase the

market value of its newly-issued portfolio. Note that this result holds in any MPCE and

does not appeal to any assumptions regarding the behavior of future governments.

Our result relies on the stationary maturity distribution not being associated with

first best consumption and labor. Under such a stationary distribution, taxes would be

zero, the market value of debt would be sufficiently negative to finance the stream of

government spending forever, and the marginal benefit of resources for the government

would be zero. For this reason, the stationary maturity distribution is not determined in

this circumstance. We can trivially rule out this case if there are exogenous bounds on

government debt which prevent such asset accumulation for the government.
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Corollary 1 Suppose that b > −g. Then if conditional on B, there exists a solution to

(12)− (14) with a stationary maturity distribution b′k = bk ∀k, it is necessary that bk = b̂

∀k so that the maturity distribution is flat.

Finally, returning to Lemma 2, note that Proposition 1 also implies that starting from

a flat maturity distribution, the unique continuation equilibrium requires the issuance of

a flat maturity distribution. Therefore, in any MPCE, a flat government debt maturity

is an absorbing state, and all flat maturity distributions are stationary.

Corollary 2 Suppose that B satisfies bk = b ∀k for some b and that {c, n} 6=
{
cfb, nfb

}
.

Then, in all solutions to (12)− (14) b′k = b ∀k.

Starting from a flat maturity distribution, the current government would like to guar-

antee a constant level of consumption and labor going forward. Choosing a maturity

distribution that is not flat cannot guarantee such a continuation equilibrium, since fu-

ture governments will deviate from a smooth policy in order to relax the government

budget constraint. For this reason, the government chooses a flat maturity distribution,

and a flat maturity distribution is an absorbing state.11

5 Concluding Remarks

In this paper, we characterize optimal fiscal policy and debt managment when the govern-

ment reoptimizes sequentially. We consider an MPCE in which the government chooses

policy as a function of the infinite-dimensional portfolio of government bonds that it in-

herits in every period. Our analysis applies to the entire set of MPCE’s, including those

that do not coincide with the commitment policy or those with potentially discontinuous

policy functions both on and off the equilibrium path. We find that any stationary distri-

bution of debt maturity must be flat, with the government owing the same amount at all

future dates. Our analysis thus provides a theoretical argument for the use of consols in

debt management based on the sequential optimization of fiscal policy by the government.

In our framework, we have considered a situation in which a government’s objective

in its debt issuance strategy is to minimize its financing costs. In practice, government

debt management offices also pursue other objectives, such as supporting financial sta-

bility. For example, this can be achieved either by providing liquidity to segments of the

11These results are consistent with the quantitative analysis of Debortoli et al. (2017) who consider
a stochastic infinite horizon with limited debt maturities, and who find that the maturity distribution
transitions to an approximately flat one.
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market that lack it or through the bond auction process, which itself may serve a purpose

of aggregating financial market information. How these factors matter for the optimal

maturity management of government debt is an interesting question for future research.
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Appendix

Appendix A. Proofs of Section 2

Proof of Lemma 1

The necessity of these conditions is proved in the text. To prove sufficiency, let the

government choose the associated level of debt
{
{bt,k}∞k=1

}∞
t=0

which satisfies (9) and a

tax sequence {τt}∞t=0 which satisfies (8). Let bond prices satisfy (8). (9) given (1) implies

that (3) and (4) are satisfied. Therefore household optimality holds and all dynamic

budget constraints are satisfied along with the market clearing, so the equilibrium is

competitive.�

Appendix B. Proofs of Section 4

Proof of Lemma 2

Note that if bk = b ∀k, then from Assumption 1, the solution under commitment admits

{ct, nt} = {c∗ (b) , n∗ (b)} ∀t, and this solution can be implemented with b′k = b given (18)−
(19). Since the MPCE satisfies the same constraints of the problem under commitment

plus additional constraints regarding sequential optimality, it follows that

W (B) =
u (c∗ (b) , n∗ (b))

1− β
≥ V (B) (B.1)

if bk = b ∀k. Now consider optimal policy under the MPCE in (12)− (14) given bk = b ∀k.

A government has the option of choosing c = c∗ (b) and n = n∗ (b) together with b′k = b

∀k. This satisfies the resource constraint (13) and the implementability constraint (14).

Therefore, it follows that

V (B) ≥ u (c∗ (b) , n∗ (b)) + βV (B) . (B.2)

Equations (B.1) and (B.2) imply that

V (B) = W (B) . (B.3)
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By Assumption 1, W (B) is uniquely characterized by {ck, nk} = {c∗ (b) , n∗ (b)} ∀k.

Therefore, it follows that any solution to (12) − (14) given bk = b ∀k admits c = c∗ (b)

and n = n∗ (b).�

Proof of Lemma 3

Conditional on B, if a solution admits b′k = bk, then this means that B is an absorbing

state with B = B′ and consumption and labor are constant and equal to some {c, n} from

that period onward. Therefore, hk (B′) = βkuc (c, n) ∀k ≥ 1 for hk (B′) defined in (11).

As such, (14) can be rewritten as

uc (c, n) c+ un (c, n)n− uc (c, n) b1 + uc (c, n)
∞∑
k=1

βk (b′k − bk+1) = 0 (B.4)

which combined with (21) and the fact that b′k = bk implies that

uc (c, n) c+ un (c, n)n = uc (c, n) b̂. (B.5)

Now consider the solution to the following problem given b̂:

max
c,n

u (c, n)

1− β
s.t. c+ g = n and (B.5) . (B.6)

It is necessary that V (B) be weakly below the value of (B.6). This is because the

solution to V (B) also admits a constant consumption and labor (as in the program in

(B.6)) and since the constraint set in (B.6) is slacker, since the program ignores the role

of government debt in changing future policies. Note furthermore that the value of (B.6)

equals W ({bk}∞k=1) |bk=b̂ ∀k, where this follows from Assumption 1. Therefore,

V (B) ≤ W ({bk}∞k=1) |bk=b̂ ∀k. (B.7)

Now consider the welfare of the government in the MPCE if, instead of choosing b′k = bk

∀k, it instead chooses b′k = b̂ ∀k with c = c∗(̂b) and n = n∗(̂b). It follows from

Lemma 2 that under this perturbation, hk(B′) = βkuc(c
∗(̂b), n∗(̂b)) ∀k ≥ 1, which im-

plies that the resource constraint (13) and implementability constraint (14) are satisfied

under this deviation. Because the continuation value associated with this deviation is

W ({bk}∞k=1) |bk=b̂ ∀k, it follows that for this deviation to be weakly dominated:

W ({bk}∞k=1) |bk=b̂ ∀k ≤ V (B) . (B.8)
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Given (B.7) and (B.8), it follows that W ({bk}∞k=1) |bk=b̂ ∀k = V (B). Therefore, given

B, there exists another solution to (12) − (14) with b′k = b̂ ∀k which achieves the same

welfare.�

Proof of Lemma 4

Before proving this lemma, define claffer as:

claffer = arg max
c

{
c+

un(c, c+ g)

uc(c, c+ g)
(c+ g)

}
, (B.9)

and let blaffer correspond to the value of the maximized objective in (B.9). It follows that

a solution to (15)− (17) exists if bk = b ∀k ≥ 1 if b ≤ blaffer.

Given this definition, we can proceed to prove this lemma by contradiction. By Lemma

3,

V (B) = W ({bk}∞k=1) |bk=b̂ ∀k =
u(c∗(̂b), n∗(̂b))

1− β
(B.10)

for b̂ defined in (21). Now suppose that b1 6= b̂. Given the definition of b̂, this means that

b̂ ∈ (b, b) and that b̂ ≤ blaffer. We consider two cases separately.

Case 1. Suppose that b̂ < blaffer, and suppose that the government locally deviates

to b′k = b̃ 6= b̂ ∀k so that from tomorrow onward, consumption is c∗(̃b) and labor is n∗(̃b),

where this follows from Lemma 2. This means that hk(B̃) = βkuc(c
∗(̃b), n∗(̃b)) under the

deviation. In order to satisfy the resource constraint and implementability condition, let

the government deviate today to a consumption and labor allocation {c̃, ñ} which satisfies

c̃+ g = ñ (B.11)

and

uc(c̃, ñ)c̃+ un(c̃, ñ)ñ− (uc(c̃, ñ)− uc(c∗(̃b), n∗(̃b)))b1 = (B.12)

uc(c
∗(̃b), n∗(̃b))

(
b̂+

β

1− β
(̂b− b̃)

)

where we have appealed to the definition of b̂ in (21). For such a deviation to be weakly

dominated, it must be that

V (B) ≥ u (c̃, ñ) + βW ({bk}∞k=1) |bk=b̃ ∀k. (B.13)
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Clearly, the value of the right hand side of (B.13) equals V (B) if b̃ = b̂. Therefore, it must

be that b̃ = b̂ with {c̃, ñ} = {c∗(̂b), n∗(̂b)} maximizes the right hand side of (B.13) subject

to (B.11), and (B.12). More specifically, we can consider the solution to the following

program

max
c̃,ñ,̃b

u (c̃, ñ) + βW ({bk}∞k=1) |bk=b̃ ∀k s.t. (B.11) and (B.12) . (B.14)

For the deviation to not strictly increase welfare, b̃ = b̂ must be a solution to (B.14). By

Assumption 1, W ({bk}∞k=1) |bk=b̃ ∀k = u(c∗, n∗)/ (1− β) where {c∗, n∗} = {c∗(̃b), n∗(̃b)} are

the unique levels of consumption and labor which maximize welfare given b̃ and are defined

in (18) and (19). Letting µ1 represent the Lagrange multiplier on the implementability

condition for the program defining W ({bk}∞k=1) |bk=b̃ ∀k in (15)− (17), it follows from first

order conditions that

uc(c
∗, n∗) + un(c∗, n∗)+ (B.15)

µ1

(
uc(c

∗, n∗) + un(c∗, n∗)

+ucc(c
∗, b∗)(c∗ − b̃) + ucn(c∗, n∗)(c∗ − b̃+ n∗) + unn(c∗, n∗)n∗

)
= 0.

Since {c∗, n∗} 6= {cfb, nfb} by the statement of the lemma, (B.15) implies that µ1 6= 0.

Using this observation, implicit differentiation of (18) and (19) taking (B.15) into account

implies

c∗′(̃b) = n∗′(̃b) = −µ1
uc(c

∗, n∗)

uc(c∗, n∗) + un(c∗, n∗)
. (B.16)

Finally, by the Envelope condition,

dW ({bk}∞k=1) |bk=b̃ ∀k

db̃
= −µ1

uc (c∗, n∗)

1− β
. (B.17)

Now consider the solution to (B.14). Let µ0 correspond to the Lagrange multiplier on

(B.12). First order conditions with respect to c̃ and ñ imply

uc(c̃, ñ) + un(c̃, ñ)+ (B.18)

µ0

(
uc(c̃, ñ) + un(c̃, ñ)

+ucc(c̃, ñ)(c̃− b1) + ucn(c̃, ñ)(c̃− b1 + ñ) + unn(c̃, ñ)ñ

)
= 0.

Since {c̃, ñ} 6= {cfb, nfb} by the statement of the lemma, (B.18) implies that µ0 6= 0.

Since the solution admits b̃ = b̂ ∈
(
b, b
)
, then we can ignore the bounds on government

debt, and first order conditions with respect to b̃ taking into account (B.16) and (B.17)
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yields

µ0µ1
ucc(c

∗, n∗) + ucn(c∗, n∗)

uc(c∗, n∗) + un(c∗, n∗)

(
b̂− b1 +

β

1− β
(̂b− b̃)

)
+

β

1− β
(µ0 − µ1) = 0. (B.19)

Note that (B.15) and (B.18) imply that

β

1− β
(µ0 − µ1) =

β

1− β
µ0µ1

ucc(c
∗, n∗) + ucn(c∗, n∗)

uc(c∗, n∗) + un(c∗, n∗)
(̃b− b1) (B.20)

Now consider if b̃ = b̂ so that {c̃, ñ} = {c∗, n∗}. In that case, use (B.20) to substitute

into (B.19) to achieve:

µ0µ1
ucc(c

∗, n∗) + ucn(c∗, n∗)

uc(c∗, n∗) + un(c∗, n∗)
(̂b− b1) = 0. (B.21)

If it were the case that b̂ 6= b1, then (B.21) would require that ucc(c
∗, n∗)+ucn(c∗, n∗) = 0,

which contradicts the fact that ucc(c
∗, n∗) + ucn(c∗, n∗) < 0. Therefore, b̂ = b1.

Case 2. Suppose that b̂ = blaffer. In this case, consider an analogous perturbation as

in case 1 which reduces b̂ locally. For such a perturbation to be weakly dominated, the

analog of (B.21) requires

µ0µ1
ucc(c

∗, n∗) + ucn(c∗, n∗)

uc(c∗, n∗) + un(c∗, n∗)
(̂b− b1) ≥ 0 (B.22)

It follows from (B.17) that µ1 > 0 since any reduction in inherited debt can facilitate

higher consumption and higher welfare. Since ucc(c
∗, n∗) + ucn(c∗, n∗) < 0, satisfaction of

(B.22) requires

µ0(̂b− b1) ≤ 0. (B.23)

Given that {c̃, ñ} = {c∗, n∗} = {claffer, claffer + g}, it can be verified from (B.9) that if

b1 < (>) b̂ = blaffer, then (B.18) implies that µ0 > (<) 0. This follows from the fact that

claffer < cfb and the term in parentheses multiplying µ0 in equation (B.18) is equal to 0

if b1 = blaffer and is increasing in b1. Therefore, (B.23) cannot hold unless b̂ = b1.�

Proof of Lemma 5

Suppose that bl = b̂ ∀l ≤ m. Given B, let B̂(1) represent the portfolio which sets

b̂k = bk+1 so that no retrading takes place. Note that in such a portfolio, b̂1 = b2.

Define B̂(2) analogously as the portfolio involving no retrading at the next date, so that
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b̂k = bk+2 under B̂(2), and define B̂(l) ∀l ≤ m analogously. In any MPCE for which

b1 = b̂, a possible deviation sets {c, n} = {c∗(̂b), n∗(̂b)} and b′k = bk+1 so that no retrading

takes place, where this deviation satisfies the resource constraint and implementability

condition given (18)− (19). For such a deviation to be weakly dominated, it is necessary

that:

V (B) ≥ u(c∗(̂b), n∗(̂b)) + βV (B̂(1)). (B.24)

Forward induction on this argument implies that

V (B) ≥
m−1∑
l=0

βlu(c∗(̂b), n∗(̂b)) + βmV (B̂(m)). (B.25)

Combining (B.10) with (B.25), we achieve

V (B) ≥ V (B̂(m)). (B.26)

Now consider optimal policy starting from B̂(m). Note that since bl = b̂ ∀l ≤ m, then

following the same arguments as in the proof of Lemma 3, a feasible strategy starting from

B̂(m) is to issue a flat debt maturity with all bonds equal to b̂. Such a strategy ensures

a constant consumption and labor allocation forever equal to {c∗(̂b), n∗(̂b)}. As such, it

follows that (B.26) holds with equality and that choosing a flat maturity distribution

going forward is optimal.

Now we prove by contradiction that bm+1 = b̂. Suppose it were the case that bm+1 6= b̂.

This means that starting from B̂(m), the immediate debt which is owed by the government

does not equal b̂. If this is the case, then the same arguments as those in the proof of

Lemma 4 imply that there exists a deviation from the government’s equilibrium strategy

at B̂(m) which can strictly increase the government’s welfare. However, if this is the case,

(B.26) which holds with equality is violated. Therefore, it must be that bm+1 = b̂.�

Proof of Proposition 1 and Corollaries 1 and 2

The proof of Proposition 1 follows directly by induction after appealing to Lemmas 4 and

5.

To prove the first corollary, note that for the statement of Proposition 1 to be false, it

is necessary that {c, n} = {cfb, nfb}. However, if this is the case, then (B.4) implies that

cfb +
un(cfb, nfb)

uc(cfb, nfb)
nfb = −g =

∞∑
k=1

βk−1 (1− β) bk ≥ b (B.27)
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which contradicts bk > −g.

To prove the second corollary, note that from Lemma 2, it is necessary that the con-

tinuation equilibrium starting from a flat government debt maturity entail consumption

and labor equal to {c∗(b), n∗(b)} forever. The arguments in the proof of Lemmas 4 and

5 imply that if the government were to choose a non-flat maturity distribution going for-

ward, future governments would not choose {c∗(b), n∗(b)} forever. Therefore, all solutions

to (12)− (14) admit b′k = b ∀k.�
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