点亮创新之光,照亮科研梦想

中科创新烁智 CREATIVE INTELLIGENCE(HTTPS://CSCITECH.TOP)

  • 博客(79)
  • 资源 (21)
  • 收藏
  • 关注

原创 GPT-5 系统提示词疑似泄露:15000 tokens 详情

疑似GPT-5系统提示词泄露事件引发AI圈热议。2025年8月,一份1.5万Token的文档在GitHub曝光,包含GPT-5的身份声明、知识截止日期、沟通风格等核心信息。技术分析显示部分内容与官方特性吻合,但OpenAI官方未予确认。业内推测可能是部分真实但不完整的信息,或是OpenAI故意释放的"烟雾弹"。该事件既展示了AI技术的透明度趋势,也反映了商业机密保护的重要性。

2025-08-28 00:13:10 410

原创 马斯克突然开源 9050 亿参数 Grok 2.5,直言 “中国公司最难缠”!

马斯克开源Grok 2.5引发AI行业震动:参数神话与商业限制并存 xAI发布的Grok 2.5以9050亿总参数成为最强开源模型,支持超长上下文和MoE架构,但附带的“非商业许可”引发争议。马斯克直言中国公司是最大对手,凸显行业竞争加剧。中国AI企业如阿里、DeepSeek等已构建多模态技术护城河,以快速迭代、低成本和高场景适配性应对挑战。面对Grok 2.5的商业限制,中国企业通过二次研发和自研模型破局,甚至推动全球AI规则重塑。开源竞赛正转向多模态与商业化平衡的新战场,中国能否领跑成为关键议题。

2025-08-27 18:20:46 233

原创 DeepSeek V3.1 横空出世:重新定义大语言模型的边界与可能

DeepSeek V3.1发布:智能体时代的"灵活思考"AI DeepSeek团队推出新一代大语言模型V3.1,其创新性的混合推理架构实现了"思考模式"与"非思考模式"的无缝切换,在保持高响应速度的同时显著提升复杂任务处理能力。 技术突破: 双模式设计:非思考模式用于快速问答(响应速度提升60%),思考模式专攻复杂推理(响应时间缩短42%,Token消耗减少28%) 性能表现:编程能力超越Claude4,复杂搜索准确率达98% 性价比提升:API价

2025-08-23 21:32:30 1743

原创 GPT-5深度解析:精准、高效、务实的新一代AI引擎

GPT-5正式发布,以务实升级重塑AI应用。核心亮点包括:统一多模态架构整合文本、图像等输入输出;事实准确率显著提升,医疗和科学领域表现突出;价格最高降幅60%,推出多档位模型满足不同场景需求。技术升级带来400K超长上下文窗口和工业级代码能力,但存在创造力下降、数学逻辑短板等争议。用户反馈两极分化:开发者盛赞其RAG和Agent效率,创作者则怀念GPT-4的灵性。测试显示其在代码生成和逻辑推理方面表现优异,但复杂场景仍需人工审核。GPT-5标志着AI从"炫技"转向"实干&qu

2025-08-10 02:06:21 2291

原创 轻量级王者登场!Mistral AI Devstral Small 1.1全面解析

Mistral AI推出 Devstral Medium 模型,以及 Devstral Small 的升级版。Devstral Small 1.1在SWE-Bench验证中取得了53.6%的得分,超过了Devstral Small 1.0,提升了6.8%,并超过了第二最佳的先进模型11.4%。轻量级:Devstral的参数量仅为240亿,因此足够轻巧,可以在单个RTX 4090显卡或具有32GB RAM的Mac上运行,使其成为本地部署和设备使用的合适模型。支持Mistral的函数调用格式。

2025-07-15 00:23:27 213

原创 GroK4 来了!这波 AI 进化,藏着多少颠覆想象的能力?

GroK4 实测:对话更像 “真人”,它的 “大脑” 到底强在哪?

2025-07-13 14:39:36 758

原创 爆火的 Claude Code,到底是程序员的新宠还是 AI 时代的编程革命?

Claude Code 是一款可直接在终端中运行的工具,它能理解你的代码库,并通过自然语言指令协助完成开发任务。无论你是参与开源项目,还是管理企业级代码库,Claude Code 都能通过智能自动化功能为你提供帮助,且能适配你的编码风格和项目需求。完成后,Claude Code 将更新文件,在终端中显示修改内容,并提供所做更改的摘要。此命令会在你的设备上安装 Claude Code。现在,你的 Python 环境已安装好运行 Supabase 库所需的所有依赖项,且仓库已准备就绪,可供探索。

2025-07-09 12:35:20 2956

原创 华为盘古大模型5.5发布:准万亿MoE架构领跑,自适应推理效率提升8倍

在2025年华为开发者大会(HDC 2025)上,华为正式推出盘古大模型5.5版本。延续"产业赋能"定位,此次升级涵盖五大核心模型体系:自然语言处理(NLP)、多模态感知、预测分析、科学计算及计算机视觉(CV),通过架构创新推动行业智能化转型。华为云CEO张平安现场宣布,盘古5.5的NLP能力已对标国际顶级模型,多模态世界模型实现国内首创。

2025-06-21 11:49:50 927

原创 OpenAI o3-pro 震撼上线,比 o3 强在哪?

OpenAI 长期以来一直是人工智能领域的领军者,持续推动机器学习模型的能力进阶。其最新推出的 o3-pro 模型,标志着这一探索之旅中的又一个重要里程碑。o3-pro 于 2025 年初发布,以卓越的性能和适应性脱颖而出,成为 AI 领域的颠覆者。本文将深入探讨 OpenAI o3-pro 的基准测试表现、定价策略及 API 定价,详细解析这款模型为何能成为极具突破性的创新成果。

2025-06-11 13:48:14 998

原创 谷歌再次改进 Gemini 2.5 Pro,宣称其在编码和数学方面更胜一筹

谷歌发布了 Gemini 2.5 06-05 预览版,这是其旗舰产品 Gemini 2.5 Pro 的升级版,再次突破了人工智能的界限。最新版本带来了显著的增强,尤其是在编码、推理和创意输出方面,使其成为人工智能领域的领导者。开发者、企业和普通用户现在可以通过 Google AI Studio、Vertex AI 和 Gemini 应用探索其先进的功能。

2025-06-08 15:21:30 1088

原创 DeepSeek R1-0528问世,以强大的开源实力挑战 OpenAI 的 o3 和谷歌的 Gemini 2.5 Pro。

DeepSeek R1 模型已完成小版本升级,当前版本为 DeepSeek-R1-0528。用户通过官方网站、APP 或小程序进入对话界面后,开启“深度思考”功能即可体验最新版本。API 也已同步更新,调用方式不变。

2025-06-05 15:18:12 1092

原创 Claude 4 发布,编程界要变天?最强编程 AI 登场!

在SWE-bench Verified中,该模型对真实世界的编码任务评分为72.7%,略微超过Opus 4(72.5%),并显著领先于Claude 3.7 Sonnet(62.3%)。在SWE-bench Verified中,它的得分为72.5%,而在高计算设置下,这一分数跃升至79.4%——在所有对比模型中最高。与Sonnet 4一样,它支持200K的上下文窗口,因此如果您想将其与大型代码库一起使用,这可能是一个缺点。在测试新模型时,我通常使用相同的任务——这样我可以看到它与我之前测试的其他模型的比较。

2025-05-24 03:09:53 1143

原创 OpenAI for Countries:全球AI基础设施的“技术基建革命”

2025年5月7日,OpenAI宣布启动“OpenAI for Countries”计划,目标是为全球各国构建本土化的AI基础设施,提供定制化服务。这一计划被视为其“星际之门”项目的全球化延伸,以技术合作为核心,覆盖数据中心建设、模型适配与产业生态培育。

2025-05-13 23:57:35 766 1

原创 当 Manus AI 遇上 OpenAI Operator,谁能更胜一筹?

在这次 Manus AI 与操作智能体的比较中,我们将探究中国首款人工智能体的各项功能,并将其性能与 ChatGPT 上的 OpenAI 智能体进行对比。在 Manus AI 与 OpenAI Operator 对比的这一部分中,我们将在两个模型上测试三个不同的提示,并比较它们的响应。Manus AI 的界面与 OpenAI 的 ChatGPT 以及 Anthropic 的 Claude 3.7 类似,它会实时在屏幕上展示思考过程,并提供在分屏中打开回复内容的选项。让我们看看它们能给我们带来什么。

2025-05-11 23:52:29 1063

原创 开源大模型 “卷王” 诞生!Qwen3 凭什么超越 DeepSeek R1?

了解 Qwen3 套件,包括其架构、部署以及与 DeepSeek-R1 和 Gemini 2.5 Pro 相比的基准。

2025-05-05 23:54:41 1108

原创 LangChain与MCP:大模型时代的工具生态之争与协同未来

LangChain是一个开源框架,通过**模型I/O、链(Chains)、代理(Agents)、内存(Memory)**四大核心组件,将大语言模型(LLM)与外部数据、工具无缝连接。其优势在于模块化设计,开发者可自由组合预置工具库(如500+工具)或自定义流程,快速搭建问答系统、聊天机器人等应用。两者的协同将是大模型应用落地的关键——正如Zapier连接工作流,未来的AI原生生态需兼顾灵活性与标准化。,旨在通过标准化协议连接AI应用(主机)与外部工具(服务器)。在大模型驱动的AI应用生态中,

2025-05-03 23:42:03 1459

原创 GPT-4.1 重磅上线:三大版本齐发,上下文处理能力提升 8 倍

在 MultiChallenge 测试中,该测试评估模型是否能够遵循多轮指令,并记住在谈话中引入的约束,GPT-4.1 的得分为 38.3%,较 GPT-4o 的 27.8% 有所提升。而在 IFEval 测试中,该测试评估是否遵循明确规定的输出要求,GPT-4.1 的得分达到 87.4%,较 GPT-4o 的 81% 也有了稳步提升。在 Aider 的多语言 diff 基准测试中,GPT-4.1 的表现也超过了 GPT-4o,达到了 52.9% 的准确率,超越了多种语言和格式的代码差异。

2025-05-03 20:14:31 853

原创 丹麦正在建造一台英伟达人工智能超级计算机

(英伟达自己的Eos超级计算机在一个未公开的地点运行,其人工智能性能为每秒18.4百亿亿次。英伟达医疗保健副总裁金伯利·鲍威尔(Kimberly Powell)在新闻发布会上澄清了合作协议,他说:“在我们的合作协议中,我们将把所有这些生成式人工智能带到他们的主权人工智能基础设施中,以便(丹麦)就可以真正推动医学、量子计算和社会科学的发展。它的重要性涉及方方面面,从生产力和效率的提高,到军事和网络安全应用——国家安全政策制定者并没有忽视这一点,美国对用于训练人工智能的硬件出口中国的限制就说明了这一点。

2024-03-25 11:00:00 1828

原创 遥感领域高水平期刊投稿指南:J-STARS 期刊介绍

《IEEE应用地球观测与遥感专题期刊(JSTARS)投稿指南》 JSTARS是地球科学与遥感领域的重要SCI期刊,聚焦遥感技术在实际观测中的应用,涵盖数据获取、处理及多领域应用。期刊接受研究论文与综述,主题包括AI遥感、环境监测等,要求8-10页篇幅,强调创新性与应用价值。投稿周期约5-8个月,特刊审稿更快。建议选题结合热点(如AI+遥感),注重图表质量与语言表达,引用近期IEEE文献以提高录用率。常见拒稿原因包括主题不符、创新不足或数据不完整。投稿前需使用IEEE模板,确保格式规范。

2024-03-03 16:05:46 17941 1

原创 前 Twitter 工程师正在构建 Particle,一款由人工智能驱动的新闻阅读器

(关键词是有链接的。在即将到来的抽象时代,这是AI日常应用的一个很好的例子。然而,在宣布私人测试时,Beykpour指出读者可以使用摘要来快速了解情况,或者选择更深入地了解“一个故事是如何随着时间的推移而展开的”。这家初创公司提供一种个性化的“多视角”新闻阅读体验,不仅利用AI技术来总结新闻,还旨在公平地补偿作者和出版商——至少这是它们的宣称。Particle通过其网站为未登录的用户提供了它的技术演示,在演示中,文章和它们的摘要、最后更新的时间戳以及在底部的小节中列出了它们参考的来源。

2024-02-28 16:13:50 709

原创 OpenAI超级视频模型Sora登上央视,LeCun强推的「世界模型」雏形相继诞生,AGI如何能够以人类的理解方式看世界?

去年初,Meta 首席 AI 科学家 Yann LeCun 针对「如何才能打造出接近人类水平的 AI」提出了全新的思路。他勾勒出了构建人类水平 AI 的另一种愿景,指出学习世界模型(即世界如何运作的内部模型)的能力或许是关键。这种学到世界运作方式内部模型的机器可以更快地学习、规划完成复杂的任务,并轻松适应不熟悉的情况。LeCun 根据动物的大脑运行机制,提出了一个端到端的仿生架构。

2024-02-18 18:29:02 1568 1

原创 遥感领域顶刊推荐:IEEE TGRS——地球科学与遥感研究的黄金标尺

IEEE地球科学与遥感学报(TGRS)是遥感领域顶级期刊,2025年影响因子8.6,中科院1区Top期刊。该刊覆盖地球观测、遥感技术等前沿研究,年发文量约2900篇,审稿周期平均4个月。作为遥感三大顶刊之一,TGRS特别注重技术创新与实用性,中国大陆发文占比达79%。投稿需原创性突破研究,强调方法严谨性和数据可靠性。期刊提供开放获取选项(APC 2645美元),并设有专业学术社区支持。

2024-02-07 18:19:13 31432 7

原创 遥感领域期刊投稿指南:ISPRS Journal 国际摄影测量与遥感学会期刊

《ISPRS Journal of Photogrammetry and Remote Sensing》是国际摄影测量与遥感学会(ISPRS)官方合作期刊,2025年影响因子12.2(较2023年上升1.6)。该刊聚焦传感器技术、三维重建算法、遥感智能解译等原创研究,要求方法或应用具有显著突破(如新算法性能提升15%+)。审稿周期6-9个月,录用率约50%,强调多源数据验证(如LiDAR与红外数据融合)和深度学习应用(如点云分割改进)。投稿需注意图表规范(600dpi分辨率)和语言标准(重复率<15%

2024-02-07 17:24:39 12110 1

原创 遥感领域会议投稿指南:地球系统科学顶级国际会议 IGARSS

IGARSS是IEEE GRSS主办的遥感领域顶级国际会议,涵盖遥感技术、卫星观测、AI融合应用等方向。投稿需4页论文,严格遵循IEEE格式,突出创新性和应用价值。会议采用双盲评审,录用率约60-70%,审稿周期6-8周。建议提前关注年度主题,精准选择分会场,注重摘要质量和图表呈现。会议提供学术交流、工业展览和职业发展机会,是年轻学者拓展国际影响力的重要平台。投稿需提前6个月准备,严守截止日期,投稿后需准备签证等会务事宜。

2023-12-03 15:02:58 6795

原创 真假GPT-4?微调 Llama 2 以替代 GPT-3.5/4 已然可行!

然而,随着开源技术的不断进步,微调(Fine-tuning)Llama 2 模型已经成为一种可行的替代方案,它不仅在成本上有显著优势,而且在特定任务上甚至能达到令人难以置信的结果质量。思来想去,和同行讨论良久,不清楚是什么模型(最开始怀疑是官方GPT4-Turbo的幺蛾子,毕竟OpenAI最近漏洞百出...后来经过测试,官方模型没有发现明显问题,于是开始怀疑是XXX模型的微调版),遂开展相关咨询搜索,便有了这篇文章~微调Llama 2模型的崛起,不仅是技术进步的象征,也是开源精神的胜利。

2023-11-24 20:12:08 2692 1

原创 ICLR2022 - 语言驱动的语义分割

我们提出了 LSeg,一种用于语言驱动语义图像分割的新型模型。LSeg使用文本编码器计算描述性输入标签(例如“草”或“建筑物”)的嵌入,以及使用基于Transformer的图像编码器来计算输入图像的每像素密集嵌入。图像编码器通过对比度目标训练以将像素嵌入与相应语义类别的文本嵌入对齐。文本嵌入提供了一种灵活的标签表示形式,在这种表示形式中,语义上相似的标签映射到嵌入空间中的相似区域(例如“猫”和“有毛的”)。这使得LSeg能够在测试时推广到以前未见过的类别,而无需重新训练甚至不需要单个额外的训练样本。

2023-05-26 21:03:06 1707 1

原创 ICLR2023 - 基于视觉语言预训练模型的医疗图像小样本学习及零样本推理性能研究

大规模预训练视觉语言模型(VLM)在自然图像上表现出了显著的领域迁移能力。然而,这种能力是否也能应用于医学图像领域仍然是未知的。本文深入研究了预训练的VLM在医学领域的知识可转移性,表明设计良好的医学提示是从预训练的VLM中获取知识的关键。研究表明,通过使用域间共享的表达性属性提示,VLM可以跨域传递知识,提高其泛化能力。这种机制使VLM能够在较少或没有图像样本的情况下识别新对象。

2023-04-24 22:33:30 995 1

原创 Arxiv2019 - MultiPath:行为预测的多重概率锚点轨迹假设

预测人的行为是运动规划中一个困难而关键的任务。这在很大程度上具有挑战性,因为在自动驾驶等现实世界领域,可能出现的结果具有高度的不确定性和多模式集。除了单一的MAP轨迹预测[1,2],获得未来的精确概率分布是一个积极关注的领域[3,4]。**我们提出了MultiPath,它利用了一组固定的未来状态序列锚,这些锚对应于轨迹分布的模式。**在推理中,我们的模型预测了锚点上的离散分布,并且对于每个锚点,回归锚点路径点的偏移量以及不确定性,在每个时间步中产生高斯混合。

2023-03-29 21:52:07 512 1

原创 ColossalChat用完整RLHF技术克隆ChatGPT的开源解决方案

在微调过程中,固定大模型的参数,只调整低秩矩阵的参数,大大减少了训练所需的参数数量,降低了成本。在PPO部分,ColossalChat遵循两个阶段的过程:首先,制造经验阶段,它使用SFT(有监督的微调)、参与者、RM(奖励模型)和批评模型来计算生成的经验并将其存储在缓冲区中。此外,Alpaca的训练数据集仅限于英语,这在一定程度上限制了模型的性能。一旦获得了微调后的模型权重,就可以通过量化降低推理的硬件成本,启动在线推理服务,只需要一个大约4GB内存的GPU就可以部署70亿个参数的模型推理服务。

2023-03-29 20:42:56 5037

原创 CSET - 小数据的大AI潜力

传统观点认为,尖端人工智能依赖于大量数据。根据这一人工智能概念,数据是一种重要的战略资源,一个国家(或公司)能获得多少数据被视为人工智能进展的关键指标。这种对数据在人工智能中的作用的理解并非完全不准确——许多当前的人工智能系统确实使用了大量的数据。但如果政策制定者认为这是所有人工智能系统的永恒真理,他们就会误入歧途。过分强调数据忽略了几种人工智能方法的存在,并低估了其潜力,这些方法不需要大量标记的数据集或从现实世界的交互中收集的数据。在本文中,我们将这些方法称为“小数据”方法。

2023-03-27 20:57:23 355

原创 CVPR2021 - 基于自引导和交叉引导的小样本分割算法

小样本分割由于其对带有少量注释样本的不可见对象类分割的有效性而引起了广泛的关注。现有方法大多使用掩码全局平均池(GAP)将带注释的支持图像编码为特征向量,以方便查询图像分割。然而,由于平均操作,这个管道不可避免地会丢失一些鉴别信息。在本文中,我们提出了一种简单而有效的自引导学习方法,其中挖掘丢失的关键信息。具体来说,通过对标注后的支持图像进行初始预测,将覆盖前景区域和未覆盖前景区域分别用掩码GAP编码为主支持向量和辅助支持向量。通过主支持向量和辅助支持向量的聚合,对查询图像具有较好的分割效果。

2023-03-02 20:41:10 584

原创 ICLR2018 - 用于小样本语义分割的条件网络

few-shot学习方法的目标是在低数据状态下获得良好的性能。结构化输出任务,如分割,由于其高维和输出之间的统计依赖性,对小样本学习提出了困难。为了解决这个问题,我们提出了co-FCN,这是一个通过端到端优化学习的条件网络,可以执行快速、准确的小样本分割。网络条件建立在一个带标注的支持图像集上,通过特征融合对一个未标注的查询图像进行推理。一旦学会,我们的条件反射方法就不需要对新数据进行进一步优化。注释被限制在一个单独的向前传递中,这使得我们的方法适合交互使用。

2023-02-18 19:58:53 470

原创 瑞典军事研究:从认知心理学的视角探讨军事创新进程

在以前的研究中,对这一概念有许多定义,一些侧重于教义的变化,另一些则侧重于结构或组织的变化(例如,参见Farrell & Terriff, 2002;然而,我们认为,将这项研究与更广泛的理解结合起来是合适的,这种理解包括在和平时期应对未来军事挑战的努力(例如,参见Rosen, 1991,第7页),因此选择将军事创新理解为与连贯的军事战略相结合的新能力的发展。其次,形成共享的思维模式既可以促进军事创新,也可以抵消军事创新,因此,决策者需要意识到思维模式是可以共享的,而且认知偏差会在集体层面上影响行为者。

2023-02-17 23:54:10 612

原创 MMM2020 - 电子科技大学提出一种新颖的局部变换模块提升小样本分割泛化性能

小样本分割段对象区域的新类与一些手动注释。其关键步骤是建立支持图像(带标注图像)与查询图像(无标注图像)之间的转换模块,使支持图像的分割线索指导查询图像的分割。现有方法基于全局线索形成转换模型,但忽略了局部线索,本文验证了局部线索对转换非常重要。提出了一种新的基于局部线索的变换模块,利用局部特征之间的关系进行变换。为了提高网络的泛化性能,在基于余弦距离的高维度量嵌入空间中计算关系矩阵。

2023-02-14 18:57:56 632

原创 Arxiv2018 - 加州伯克利大学借助引导网络实现快速、准确的小样本分割

基于学习的视觉分割方法已经在特定类型的分割任务上取得了进展,但受到必要的监督、固定任务的狭隘定义以及在纠正错误的推理过程中缺乏控制的限制。为了弥补标准方法的刚性和注释负担,我们解决了小样本分割的问题:给定少量图像和少量像素监督,相应地分割任何图像。我们提出了引导网络,它从任意数量的监督中提取潜在的任务表示,并优化我们的端到端架构,以实现快速、准确的小样本分割。我们的方法可以在没有进一步优化的情况下切换任务,并在得到更多指导时快速更新。

2023-02-13 19:44:05 489

原创 应对新的挑战!ChatGPT将如何改变多域作战?

在gps干扰和拒绝的环境中,ChatGPT可以帮助军事人员进行有效的通信和协调,即使在没有传统通信系统的情况下。我们对ChatGPT带来的可能性(同时也注意到挑战和担忧)感到兴奋,并渴望支持我们的客户和任务合作伙伴,在战斗中释放生成式人工智能技术的潜力,部署在专门建造的坚固计算解决方案上。计算处理能力必须驻留在内部,以确保基于人工智能的应用程序所需的低延迟和接近实时的速度。在高风险情况下,由chatgpt支持的AI可以分析来自多个来源的大量数据,以提供快速准确的威胁评估,帮助军事领导人做出明智的决策。

2023-02-12 20:09:58 2361 2

原创 PyCharm+Docker:打造最舒适的深度学习炼丹炉

参考上面的方法导入旧版本Docker文件夹,然后尝试(sudo docker run --rm --gpus all nvidia/cuda:11.0-base nvidia-smi)接下来用commit参数进行保存镜像, -a 提交人的姓名 -m “提交内容”,格式如:docker commit -a -m 现有容器ID 保存后的名称:版本号。启动demo容器(docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi)

2023-02-12 15:50:30 872

原创 ICCV2021 - 基于超相关压缩实现实时高精度的小样本语义分割

小样本语义分割的目的是学习仅使用目标类的一些带注释的支持图像从查询图像中分割目标对象。这项具有挑战性的任务需要理解不同层次的视觉线索,并分析查询和支持图像之间的细粒度对应关系。为了解决这个问题,我们提出了利用多级特征相关和高效4D卷积的超相关挤压网络(HSNet)。它从中间卷积层的不同层次中提取不同的特征,构造一个4D相关张量集合,即超相关。该方法采用高效的金字塔结构的中心-轴四维卷积,将超相关的高级语义线索和低级几何线索从粗到细逐步挤压成精确的分割面具。

2023-02-10 19:34:22 700

原创 ICCV2019 - 基于特征加权和增强的小样本分割

本文研究了图像中前景对象的小样本分割。我们在训练图像的小子集上训练CNN,每个子集都模仿few-shot设置。在每个子集中,一张图像作为查询图像,另一张图像作为支持图像,并进行基本真理分割。CNN首先从查询和支持图像中提取特征图。然后,一个类特征向量被计算为支持的特征映射在已知前景的平均值。最后,利用类特征向量与查询的特征映射之间的余弦相似度在查询图像中分割目标对象。我们通过以下两个方面做出了贡献:(1)提高特征的鉴别性,使其激活在前景上高而在其他地方低;

2023-02-06 22:32:52 444

原创 WACV2023 - 循环相似注意力的小样本医学图像分割

近年来,由于医学影像应用需求的不断提高以及对医学图像标注的专业要求,小样本学习在医学图像语义分割领域越来越受到重视。为了对数量有限的标记医学图像进行分割,现有的研究大多使用原型网络(PN),并取得了令人瞩目的成功。然而,这些方法忽略了从所提出的表示网络中提取的查询图像特征,未能保持查询图像和支持图像之间的空间联系。在本文中,我们提出了一种新的自监督小样本医学图像分割网络,并引入了一种新的循环相似注意(CRA)模块,以充分利用查询和支持医学图像之间的像素级关系。

2023-02-03 18:19:33 2167

SSD-300 VGG-based weights 权重包含两种ssd300的权重

SSD_300_vggmodel,包含两种ssd300: Model Training data Testing data mAP SSD-300 VGG-based VOC07+12+COCO trainval VOC07 test SSD-300 VGG-based VOC07+12 trainval VOC07 test -

2018-11-18

aspectjrt& aspectjweaver&aspectj&aopalliance.jar

aspectjrt.jar aspectjweaver.jar aspectj.jar aopalliance.jar 亲测可用~

2017-08-16

ssd 512x512的权重

SSD-512 VGG-based VOC07+12+COCO trainval VOC07 test ,如果需要300X300的可以去:https://download.csdn.net/download/qq_36396104/10792337

2018-11-18

《机器学习实战》中决策树python2.7代码经过加工修改后在python3.0可以完美运行的代码

《机器学习实战》源代码中使用的python2.7 在python3.0中部分是无法使用的,所以这经过了我的调试修改后在python3.0中是可以完美运行的决策树代码 内含数据样本,便于学习

2017-12-03

oracle示例数据库OT.zip

该zip文件包含以下的SQL文件: 文件:ot_create_user.sql - 用于创建OT用户和授予权限。文件:ot_schema.sql - 用于创建数据库对象,如表,约束等文件:ot_data.sql - 用于将数据加载到表中。文件:ot_drop.sql - 用于删除示例数据库中的所有对象。亲测可用,完整数据库~易百教程所用相同(oraok.com)_11g.v1.zip

2019-09-17

VC6.0win10兼容EasyX_2013冬至版.zip

vc++6.0安装程序和graphics.h手动配置文件包【验证成功】

2019-05-15

hadoop 依赖的jar包 包括asm-3.2什么的 一共21 个

hadoop 依赖的jar包 包括asm-2.2.3 aspectjrt-1.8.10 aspectjtools-1.7.4 commons-beanutils-1.9.3 commons-beanutils-core-1.8.3 commons-cli-1.2 commons-codec-1.10 commons-collections-3.2.1 commons-configuration-1.10 commons-daemon-1.0.15 commons-digester-2.1 commons-el-1.0 commons-httpclient-3.1 commons-io-2.4 commons-lang-2.6 commons-logging-1.2 commons-logging-api-1.1 commons-math3-3.6.1 commons-net-3.3 core-3.1.1 hadoop-core-1.2.1

2018-07-17

《机器学习实战》中Bayes 朴素贝叶斯 python2.7代码经过加工修改后在python3.0可以完美运行的代码

《机器学习实战》源代码中使用的python2.7 在python3.0中部分是无法使用的,所以这经过了我的调试修改后在python3.0中是可以完美运行的 朴素贝叶斯代码 内含数据样本,便于学习

2017-12-03

VC6.0win10兼容.zip

vc++6.0安装程序【验证成功】

2019-05-15

aspectjrt-1.6.9.jar

aspectjrt-1.6.9.jar

2017-08-16

aspectj-1.6.8.jar

spectj-1.6.8.jar

2017-08-16

《机器学习实战》中KNNpython2.7代码经过加工修改后在python3.0可以完美运行的代码

《机器学习实战》源代码中使用的python2.7 在python3.0中部分是无法使用的,所以这经过了我的调试修改后在python3.0中是可以完美运行的 内含数据样本,便于学习

2017-12-03

aopalliance-1.0.jar

aopalliance-1.0.jar

2017-08-16

aspectjweaver-1.6.2.jar

aspectjweaver-1.6.2.jar

2017-08-16

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除