第2-2课:分类特征统计图

本教程详细介绍了Seaborn库中用于绘制分类数据统计图的方法,包括stripplot、swarmplot、boxplot、boxenplot、violinplot、barplot和pointplot。通过实例展示了这些函数在数据可视化中的应用,如绘制散点图、分布图和估计图,以及如何利用参数调整图表样式和展示数据的集中趋势和分布特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上一课已经体验到了 Seaborn 相对 Matplotlib 的优势,本课将要介绍的是 Seaborn 对分类数据的统计,也是它的长项。

针对分类数据的统计图,可以使用 sns.catplot 绘制,其完整参数如下:

seaborn.catplot(x=None, y=None, hue=None, data=None, row=None, col=None, col_wrap=None, estimator=<function mean>, ci=95, n_boot=1000, units=None, order=None, hue_order=None, row_order=None, col_order=None, kind='strip', height=5, aspect=1, orient=None, color=None, palette=None, legend=True, legend_out=True, sharex=True, sharey=True, margin_titles=False, facet_kws=None, **kwargs)

本课使用演绎的方式来学习,首先理解这个函数的基本使用方法,重点是常用参数的含义。

  • x,y,hue:参数 data 所设置的数据集中的特征,其中 hue 是嵌入到坐标系中的分类特征,x, y 分别是数据集中作为横纵轴的特征。
  • data:一个 DataFrame 对象,即数据集。
  • row,col:如果要绘制分区坐标系,用这两个参数分别设置了“坐标矩阵”的行列。例如,指定 col 的值为某一个分类特征,就会按照该分类特征数据属性,划分不同坐标系
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CS创新实验室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值