上一课已经体验到了 Seaborn 相对 Matplotlib 的优势,本课将要介绍的是 Seaborn 对分类数据的统计,也是它的长项。
针对分类数据的统计图,可以使用 sns.catplot 绘制,其完整参数如下:
seaborn.catplot(x=None, y=None, hue=None, data=None, row=None, col=None, col_wrap=None, estimator=<function mean>, ci=95, n_boot=1000, units=None, order=None, hue_order=None, row_order=None, col_order=None, kind='strip', height=5, aspect=1, orient=None, color=None, palette=None, legend=True, legend_out=True, sharex=True, sharey=True, margin_titles=False, facet_kws=None, **kwargs)
本课使用演绎的方式来学习,首先理解这个函数的基本使用方法,重点是常用参数的含义。
- x,y,hue:参数 data 所设置的数据集中的特征,其中 hue 是嵌入到坐标系中的分类特征,x, y 分别是数据集中作为横纵轴的特征。
- data:一个 DataFrame 对象,即数据集。
- row,col:如果要绘制分区坐标系,用这两个参数分别设置了“坐标矩阵”的行列。例如,指定 col 的值为某一个分类特征,就会按照该分类特征数据属性,划分不同坐标系