343. 整数拆分

该博客讨论了一个算法问题,即如何将一个正整数拆分为多个正整数的和,以最大化这些整数的乘积。提供了一个名为`Solution`的类,其中包含一个方法`integerBreak`,使用动态规划求解此问题。示例展示了对于输入n=2和n=10时,如何找到最大乘积。动态规划数组`dp`用于存储每个数拆分后的最大乘积,通过迭代和比较不同拆分方案来更新`dp`数组。最后返回`dp[n]`作为结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k >= 2 ),并使这些整数的乘积最大化。

返回 你可以获得的最大乘积

例子1

输入: n = 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。

 例子2

输入: n = 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。
class Solution {
    public int integerBreak(int n) {
        //dp[i] 为正整数 i 拆分后的结果的最大乘积
        int[]dp=new int[n+1];
        dp[2]=1;
        for(int i=3;i<=n;i++){
            for(int j=1;j<=i-j;j++){
                // 这里的 j 其实最大值为 i-j,再大只不过是重复而已,
                //并且,在本题中,我们分析 dp[0], dp[1]都是无意义的,
                //j 最大到 i-j,就不会用到 dp[0]与dp[1]
                dp[i]=Math.max(dp[i],Math.max(j*(i-j),j*dp[i-j]));
                // j * (i - j) 是单纯的把整数 i 拆分为两个数 也就是 i,i-j ,再相乘
                //而j * dp[i - j]是将 i 拆分成两个以及两个以上的个数,再相乘。
            }
        }
        return dp[n];
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值