968. 监控二叉树

这篇博客讨论了一个关于二叉树的问题,即如何使用最少的摄像头来覆盖树的所有节点。博主提出了一个局部最优解,即在叶子节点的父节点安装摄像头,并给出了一个后序遍历的解决方案。通过判断节点的子节点覆盖情况,确定当前节点是否需要摄像头。示例展示了对于不同二叉树结构,所需摄像头的数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个二叉树,我们在树的节点上安装摄像头。

节点上的每个摄影头都可以监视其父对象、自身及其直接子对象。

计算监控树的所有节点所需的最小摄像头数量。

分析: 局部最优:让叶子节点的父节点安摄像头,所用摄像头最少,整体最优:全部摄像头数量所用最少

示例 1

输入:[0,0,null,0,0]
输出:1
解释:如图所示,一台摄像头足以监控所有节点。

输入:[0,0,null,0,null,0,null,null,0]
输出:2
解释:需要至少两个摄像头来监视树的所有节点。 上图显示了摄像头放置的有效位置之一。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    int  res=0;
    public int minCameraCover(TreeNode root) {
        // 对根节点的状态做检验,防止根节点是无覆盖状态 .
        if(minCame(root)==0){
            res++;
        }
        return res;
    }
    /**
     节点的状态值:
       0 表示无覆盖 
       1 表示 有摄像头
       2 表示有覆盖 
    后序遍历,根据左右节点的情况,来判读 自己的状态
     */
    public int minCame(TreeNode root){
        if(root==null){
            // 空节点默认为 有覆盖状态,避免在叶子节点上放摄像头 
            return 2;
        }
        int left=minCame(root.left);
        int  right=minCame(root.right);
        
        // 如果左右节点都覆盖了的话, 那么本节点的状态就应该是无覆盖,没有摄像头
        if(left==2&&right==2){
            //(2,2) 
            return 0;
        }else if(left==0||right==0){
            // 左右节点都是无覆盖状态,那 根节点此时应该放一个摄像头
            // (0,0) (0,1) (0,2) (1,0) (2,0) 
            // 状态值为 1 摄像头数 ++;
            res++;
            return 1;
        }else{
            // 左右节点的 状态为 (1,1) (1,2) (2,1) 也就是左右节点至少存在 1个摄像头,
            // 那么本节点就是处于被覆盖状态 
            return 2;
        }
    }
}

监控二叉树问题可以使用动态规划来解决。具体思路如下: 1. 定义状态:使用一个三元组 (u, 0/1, 0/1) 表示当前节点 u 的状态,其中第二个元素表示 u 是否被监控,第三个元素表示 u 的父节点是否被监控。 2. 定义转移:对于一个节点 u,假设其左右子节点分别为 v 和 w,可以分为以下三种情况: a) u 被监控:则 v 和 w 都必须被监控,转移方程为 dp[u][1][0] = dp[v][0][1] + dp[w][0][1] + 1。 b) u 未被监控且其父节点被监控:则 v 和 w 中至少有一个被监控,转移方程为 dp[u][0][1] = min(dp[v][1][0] + dp[w][1][0], dp[v][0][1] + dp[w][1][0], dp[v][1][0] + dp[w][0][1])。 c) u 未被监控且其父节点未被监控:则 v 和 w 中至少有一个被监控,转移方程为 dp[u][0][0] = min(dp[v][1][0] + dp[w][1][0], dp[v][0][1] + dp[w][1][0], dp[v][1][0] + dp[w][0][1], dp[v][0][0] + dp[w][0][0])。 3. 初始状态:对于叶子节点,dp[u][0][0] = 0, dp[u][1][0] = 1, dp[u][0][1] = INF,INF 表示一个足够大的值。 4. 最终答案:对于根节点,dp[root][0][1] 和 dp[root][1][0] 中的较小值即为所求。 下面是使用 Python 代码实现: ``` INF = float('inf') def dfs(u, fa, dp): if not u: return dfs(u.left, u, dp) dfs(u.right, u, dp) dp[u][1][0] = dp[u.left][0][1] + dp[u.right][0][1] + 1 dp[u][0][1] = min(dp[u.left][1][0] + dp[u.right][1][0], dp[u.left][0][1] + dp[u.right][1][0], dp[u.left][1][0] + dp[u.right][0][1]) dp[u][0][0] = min(dp[u.left][1][0] + dp[u.right][1][0], dp[u.left][0][1] + dp[u.right][1][0], dp[u.left][1][0] + dp[u.right][0][1], dp[u.left][0][0] + dp[u.right][0][0]) if fa: dp[u][1][1] = dp[u][0][0] + 1 dp[u][0][1] = min(dp[u][0][1], dp[u][1][0]) else: dp[u][1][1] = dp[u][0][0] + 1 def min_camera_cover(root): dp = {} dfs(root, None, dp) return min(dp[root][1][0], dp[root][0][1]) ``` 其中,root 表示根节点,dp 是一个字典,dp[u][i][j] 表示节点 u 的状态为 (u, i, j) 时的最小监控数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值