- 博客(1525)
- 收藏
- 关注

原创 《YOLO11魔术师专栏》专栏介绍 & 专栏目录
【原创自研模块】【多组合点优化】【注意力机制】【主干篇】【neck优化】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化】【小目标性能提升】【前沿论文分享】【训练实战篇】
2024-10-12 13:19:28
8260
32

原创 《RT-DETR魔术师》专栏介绍 & CSDN独家改进创新实战 & 专栏目录
通过本专栏的阅读,后续你也可以自己魔改网络,在网络不同位置(Backbone、head、neck、loss等)进行魔改,实现创新!!!
2023-11-14 20:54:20
5725
24

原创 《YOLOv8-Pose关键点检测》专栏介绍 & CSDN独家改进创新实战 & 专栏目录
YOLOv8-Pose关键点检测:1)手把手从数据集标注、训练到模型的教程;2)模型轻量化创新;3)loss优化教程
2023-11-02 09:19:27
6527
18

原创 《深度学习工业缺陷检测》专栏介绍 & CSDN独家改进实战
深度学习工业缺陷检测:1)提供工业小缺陷检测性能提升方案,满足部署条件;2)针对缺陷样品少等难点,引入无监督检测;3)深度学习 C++、C#部署方案;4)实战工业缺陷检测项目,学习如何选择合适的框架和模型;
2023-09-22 21:05:56
5621
25
原创 YOLOv13改进:注意力独家魔改 | 一种新的空间和通道协同注意模块,充分挖掘通道和空间注意之间的协同作用 |最新成果
新颖度足够适合paper,全网独家首发推荐指数五颗星,适用于小目标检测,高效涨点
2025-07-18 15:57:14
6
原创 YOLOv13改进:注意力魔改 | 注意力独家魔改 | 蒙特卡罗注意力(MCAttn)模块,基于尺度变化的注意力网络 | 最新成果
新颖度足够适合paper,全网独家首发推荐指数五颗星,适用于小目标检测,高效涨点
2025-07-18 15:54:04
7
原创 YOLOv5优化:特征融合 | 金字塔稀疏 Transformer(PST)——一个轻量级、即插即用的模块 | 25年7月最新成果
问题点:特征融合对高性能视觉模型至关重要,但往往会带来难以承受的计算复杂度。然而,主流的基于注意力的融合方法通常计算开销巨大、实现复杂,在资源受限的场景中效率低下。
2025-07-18 15:45:49
4
原创 YOLOv12优化:特征融合 | 金字塔稀疏 Transformer(PST),一个轻量级、即插即用的模块 | 25年7月最新成果
提出金字塔稀疏 Transformer(PST)——一个轻量级、即插即用的模块,通过由粗到细的 token 选择机制和共享注意力参数,在大幅降低计算量的同时保留空间细节。
2025-07-18 12:53:53
10
原创 YOLOv10优化:特征融合 | 金字塔稀疏 Transformer(PST)—一个轻量级、即插即用的模块 | 25年7月最新成果
ImageNet 上将 Top-1 准确率分别提高 6.5%、1.7%、1.0%。这些结果充分证明,PST 是一种简单、硬件友好的通用增强方案,可无缝应用于检测与分类任务。
2025-07-18 12:53:29
6
原创 Yolov8-pose关键点检测:特征融合 | 金字塔稀疏 Transformer(PST)——一个轻量级、即插即用的模块 | 25年7月最新成果
提出金字塔稀疏 Transformer(PST)——一个轻量级、即插即用的模块,通过由粗到细的 token 选择机制和共享注意力参数,在大幅降低计算量的同时保留空间细节。
2025-07-18 12:53:06
10
原创 YOLO11优化:特征融合 | 金字塔稀疏 Transformer(PST)——一个轻量级、即插即用的模块 | 25年7月最新成果
我们提出金字塔稀疏 Transformer(PST)——一个轻量级、即插即用的模块,通过由粗到细的 token 选择机制和共享注意力参数,在大幅降低计算量的同时保留空间细节。
2025-07-18 10:45:43
127
原创 YOLOv8优化:特征融合 | 金字塔稀疏 Transformer(PST)——一个轻量级、即插即用的模块 | 25年7月最新成果
将 PST 嵌入当前最先进的实时检测模型(YOLOv11-N/S/M)后,在 MS COCO 上的 mAP 分别提升 0.9%、0.5%、0.4%,而延迟增加极小。
2025-07-18 10:45:16
110
原创 YOLOv13改进:轻量化创新 | 基于特征重用和特征CSO的CAM,创新十足
在多个数据集上涨点的前提下,原始6.4 GFLOPs降低至6.3 GFLOPs
2025-07-18 09:42:50
13
原创 YOLOv13改进:卷积魔改 | 轻量化双卷积DualConv,完成涨点且计算量和参数量显著下降
如何跟YOLOv13结合:1)替换原始的DSConv
2025-07-18 09:30:01
13
原创 YOLOv13改进:特征融合 | 一种新颖的多尺度特征融合iAFF,适配小目标检测
在YOLOv13中如何使用:iAFF加入Neck替代Concat;
2025-07-17 09:01:49
21
原创 YOLOv13改进:KAN系列 | 「一夜干掉MLP」的KAN ,全新神经网络架构一夜爆火
如何跟YOLOv13结合:KANConv结合 C3k2从而替代YOLOv13的 DSC3k2
2025-07-17 08:55:21
100
原创 YOLOv13改进:卷积魔改 | DCNv4更快收敛、更高速度、更高性能,效果秒杀DCNv3、DCNv2等 ,助力检测
如何跟YOLOv13结合:1)和C3k2创新性结合
2025-07-16 10:03:28
525
原创 YOLOv13改进:注意力魔改 | 通道优先卷积注意力(Channel Prior Convolutional Attention,CPCA)| 中科院 发布
新的通道优先卷积注意力(CPCA)方法,采用多尺度的深度可分离卷积模块构成空间注意力,可以在通道和空间维度上动态分配注意权重。
2025-07-16 09:51:28
22
原创 YOLOv13改进:卷积魔改 | 可变形条带卷积(DSCN),魔改DCNv3创新
提出了可变形条带卷积(DSCN),DSCN作为大核DCNv3的简化版本,相对于变形采样方法,其计算量仅为原始方法的63.2%。
2025-07-16 09:43:44
27
原创 基于YOLO11的微藻细胞检测系统(Python源码+数据集+Pyside6界面)
基于YOLO11的微藻细胞检测,阐述了整个数据制作和训练可视化过程
2025-07-16 08:27:45
721
原创 YOLOv13改进:loss优化 | SlideLoss,解决简单样本和困难样本之间的不平衡问题
SlideLoss| 亲测在多个数据集能够实现涨点,对小目标、遮挡物性能提升也能够助力涨点。
2025-07-15 13:04:33
22
原创 YOLOv13改进:轻量化卷积魔改 | 新的partial convolution(PConv)结合C3k2 | CVPR2023
PConv和C3k2 结合 | 轻量化的同时在数据集并有小幅涨点;
2025-07-15 12:57:28
18
原创 YOLOv13改进:红外小目标 | 注意力机制改进 | 维度感知选择性集成模块DASI,红外小目标暴力涨点| 2024年最新成果
维度感知选择性集成模块DASI,解决目标的大小微小以及红外图像中通常具有复杂的背景的问题点
2025-07-15 12:45:55
25
原创 YOLOv13改进:红外小目标 | 注意力改进 | 多膨胀通道精炼(MDCR)模块,红外小目标暴力涨点| 2024年最新成果
多膨胀通道精炼(MDCR)模块,解决目标的大小微小以及红外图像中通常具有复杂的背景的问题点
2025-07-15 12:35:45
24
原创 《YOLOv13魔术师专栏》专栏介绍 & 专栏目录
一、初学者最怕什么?我们怎么解决怕“读不懂”• 每篇专栏文章固定结构:‑ 问题描述→ 原理介绍 →如何改进→ 代码手把手实现教程→ 改进结构框图。• 用“地铁图”式网络结构图:把 Backbone、Neck、Head 画成 3 条地铁线,新增模块就是“新增站点”,一眼知道在哪下车(插入)。怕“跑不通”• 提供 windows 编译好的环境,一键使用。怕“用不上”• 专栏按场景分栏:小目标 / 工业缺陷 / 医学影像 / 低照度,每栏给出“0 代码迁移教程”——只需换成自己的数据集轻松实
2025-07-14 13:06:19
1467
原创 YOLOv13改进:卷积魔改 | 动态蛇形卷积(Dynamic Snake Convolution),实现暴力涨点
如何跟YOLOv13结合:替代YOLOv13的DS-C3K2
2025-07-14 09:44:23
33
原创 YOLOv13改进:block改进 | RepViTBlock和C3k2进行结合实现二次创新 | CVPR2024清华RepViT
轻量级新主干!从ViT角度重新审视移动CNN,RepViTBlock和C3k2进行结合实现二次创新
2025-07-14 09:38:26
29
原创 基于YOLO11的苹果小目标检测系统(Python源码+数据集+Pyside6界面)
基于YOLO11的苹果小目标检测,阐述了整个数据制作和训练可视化过程
2025-07-14 09:06:05
838
原创 YOLOv13改进:block优化 | PKIBlock多尺度卷积核,优势无需膨胀,即插即用小目标涨点 | CVPR2024 PKINet 遥感图像目标检测
小目标数据集,涨点近两个点,强烈推荐
2025-07-11 14:42:03
44
原创 YOLOv13改进:轻量级改进 | 逐元素乘法(star operation)二次创新,微软新作StarNet
如何跟YOLOv13结合:结合YOLOv13的C3k2
2025-07-11 14:27:42
26
原创 YOLOv13改进:轻量化卷积魔改 | 动态卷积DynamicConv ,全面优化YOLOv13中的DSConv和DSC3k2,且显著提高了大型视觉模型的性能
如何使用:1)动态卷积DynamicConv代替YOLOv13中的DSConv;2)C3k2_DynamicConv代替YOLOv13中的DSC3k2;
2025-07-11 12:53:57
258
原创 YOLOv13改进:loss优化 |一种新的自适应阈值焦点损失函数loss,更多的注意力分配给目标特征,助力红外小目标暴力涨点
提出了一种新的自适应阈值焦点损失函数,该函数将目标和背景解耦,并利用自适应机制来调整损失权重,迫使模型将更多的注意力分配给目标特征。
2025-07-11 09:18:59
36
原创 YOLOv13改进:轻量级改进 | 通用倒瓶颈(UIB)搜索块结合C3k2二次创新 | 轻量化之王MobileNetV4
引入了通用倒瓶颈(UIB)搜索块,这是一个统一且灵活的结构,它融合了倒瓶颈(IB)、ConvNext、前馈网络(FFN)以及一种新颖的额外深度可分(ExtraDW)变体技术。
2025-07-11 09:13:26
36
原创 YOLOv13改进:红外小目标 | 注意力机制改进 | 并行化注意力设计(PPA)模块,红外小目标暴力涨点
并行化 patch-aware 注意力(PPA)模块,解决目标的大小微小以及红外图像中通常具有复杂的背景的问题点
2025-07-11 09:08:18
34
windows下成功编译dcnv4环境
2024-06-18
基于YOLOv8的足球赛环境下足球目标检测系统
2024-06-18
基于YOLOV8的注意力机制源代码获取,开箱即用
2023-08-19
铝片缺陷数据集,数据集大小1400张,缺陷类型一共四种:zhen-kong、ca-shang、 zang-wu、 zhe-zho
2023-06-09
红外小目标飞机检测数据集
2023-05-07
基于yolov5的二维码识别
2023-04-30
基于分割的工业划痕质检数据集
2023-04-30
yolov1、yolov2、yolov3、yolov4、yolov5、yolov6、yolov7等论文
2023-04-28
三星油污缺陷类别:头发丝和小黑点, 数据集大小:660张
2023-04-28
玻璃瓶缺陷检测,缺陷类型:cap,数据集数量:125张
2023-04-28
二维码数据集,数据集大小1085张
2023-04-28
pyqt+yolov5+pcb缺陷检测
2023-04-01
yolov5 tensorrt c++部署
2023-03-27
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人