Yolov8-pose关键点检测:模型轻量化设计 | 引入MobileNetV3,轻量级骨架首选,进行性能对比

本文探讨了在YOLOv8-pose中引入MobileNetV3以实现轻量级关键点检测模型的性能提升。通过修改ultralytics的nnmodules和nn ask.py文件,以及配置yolov8_small_MobileNetV3-pose.yaml和yolov8_large_MobileNetV3-pose.yaml,实现了模型的轻量化设计。MobileNetV3因其高效、快速和准确的特点,特别适合于移动和嵌入式设备。实验表明,这种集成提高了模型在工业工件定位、人脸检测、摔倒检测等关键点检测任务上的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 💡💡💡本文解决什么问题:Yolov8-pose关键点评估不同轻量级网络的性能,引入MobileNetV3网络进行可行性分析

Yolov8-Pose关键点检测专栏介绍:https://blog.csdn.net/m0_63774211/category_12398833.html

✨✨✨手把手教你从数据标记到生成适合Yolov8-pose的yolo数据集;

🚀🚀🚀模型性能提升、pose模式部署能力;

🍉🍉🍉应用范围:工业工件定位、人脸、摔倒检测等支持各个关键点检测;

 1.Yolov8-pose引入MobileNetV3性能

直接先上图

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值