💡💡💡本文解决什么问题:新的partial convolution(PConv),通过同时减少冗余计算和内存访问可以更有效地提取空间特征。
PConv和C2f结合 | 轻量化的同时在数据集并有小幅涨点;
YOLO轻量化模型专栏:http://t.csdnimg.cn/AeaEF
目录
2.1 修改ultralytics\nn\modules\block.py
2.2 修改ultralytics\nn\modules\__init__.py
1.FasterNet介绍
为了设计快速神经网络,许多工作都集中在减少浮点运算(FLOPs)的数量上。然而,作者观察到FLOPs的这种减少不一定会带来延迟的类似程度的减少。这主要源于每秒低浮点运算(FLOPS)效率低下。为了实现更快的网络,作者重新回顾了FLOPs的运算符,并证明了如此低的FLOPS主要是由于运算符的频