YOLOv9改进策略 :一种新颖的通用倒瓶颈(UIB)搜索块助力检测| 轻量化之王MobileNetV4

本文介绍了YOLOv9的改进策略,特别是引入了通用倒瓶颈(UIB)搜索块,结合轻量化王者MobileNetV4,提升目标检测性能。UIB融合了多种技术,并在MobileNetV4中实现高效运行,同时文章提及了模型结构的修改方法及适用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 💡💡💡创新点:轻量化之王MobileNetV4 开源 | Top-1 精度 87%,手机推理速度 3.8ms,原地起飞!

最主要创新:引入了通用倒瓶颈(UIB)搜索块,这是一个统一且灵活的结构,它融合了倒瓶颈(IB)、ConvNext、前馈网络(FFN)以及一种新颖的额外深度可分(ExtraDW)变体技术。

 改进1结构图如下:

 《YOLOv9魔术师专栏》将从以下各个方向进行创新:

原创自研模块】【多组合点优化】【注意力机制】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化 】【SPPELAN & RepNCSPELAN4优化【小目标性能提升】前沿论文分享

### 使用MobileNetV4YOLOv7进行轻量化改进 #### 轻量化背景介绍 为了提升YOLOv7在移动设备上的效率和性能,可以借鉴MobileNetV4的设计理念和技术特性。MobileNetV4通过引入UIB(Universal Inverted Bottleneck)模以及优化后的NAS配方,在保持高精度的同时显著降低了计算复杂度[^1]。 #### 修改方案概述 具体来说,可以通过替换YOLOv7中的原有backbone部分为基于MobileNetV4的新架构来达到轻量化的目的。这不仅能够减少模型大小,还能提高推理速度而不明显牺牲检测效果。 #### 实现细节说明 ##### Backbone 替换 首先需要创建一个新的`MobileNetV4.py`文件,该文件定义了整个MobileNetV4网络结构及其特有的组件如UIB层等。接着将此文件集成到YOLOv7项目中作为新的基础特征提取器替代原有的Darknet53或其他backbone结构[^2]。 ```python from models.common import Conv, SPPF import torch.nn as nn class MobileNetV4(nn.Module): def __init__(self, num_classes=80): super(MobileNetV4, self).__init__() # 定义MobileNetV4的具体层次... def forward(self, x): pass # 前向传播逻辑... def get_mobilenet_v4(): model = MobileNetV4() return model ``` ##### C2f 模调整 对于YOLOv7中的C2f模,则可以直接采用MobileNetV4里的UIB单元来进行重构。这样做可以在不增加太多额外开销的情况下增强表达能力,从而有助于改善最终的目标检测表现[^3]。 ```python # 在models/yolo.py 中找到对应的C2f类定义位置,并做如下更改: class C2f(UIB): # 继承自MobileNetV4UIB基类 ... def _make_layer(self, block, planes, blocks, stride=1): layers = [] downsample = None if isinstance(block, UIB): # 如果当前block是指定类型的UIB,则按照特定规则构建layer列表 ... else: raise ValueError('Unsupported Block Type') return nn.Sequential(*layers) ``` ##### 注意力机制融入 除了上述改变外,还可以考虑加入MobileNetV4所独有的Mobile MQA注意力模YOLOv7的不同阶段之中。这种做法能有效捕捉图像内的全局上下文信息,进而促进更精准的对象定位与分类任务完成[^4]。 ```python # 同样是在适当的位置添加下面这段代码片段: class MobileMQAAttention(nn.Module): ... def apply_attention_module(module_list, position=-1): """ 将指定位置处插入一个Mobile MQA Attention Module """ module_list.insert(position, MobileMQAAttention()) ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小怪兽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值