一、Linux 系统部署
- 准备工作
硬件要求:服务器需具备充足计算资源。推荐使用 NVIDIA GPU,如 A100、V100 等,能加快模型推理速度。内存至少 32GB,存储建议采用高速固态硬盘(SSD),保障数据读写高效。
软件环境:安装 Linux 操作系统,如 Ubuntu 20.04。同时,安装 Python 3.8 及以上版本,以及相关依赖库,如 PyTorch、transformers 等。以 CUDA 11.7 为例,安装 PyTorch 的命令如下:
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117
安装 transformers 库:
pip install transformers
- 下载 DeepSeek 模型
访问 DeepSeek 官方模型下载地址,依据需求选择合适的模型版本。目前 DeepSeek 有不同参数规模的模型可选,如 DeepSeek-7B、DeepSeek-13B 等。
使用wget命令下载模型文件,示例如下:
wget https://download.deepseek.com/DeepSeek-7B.tar.gz
下载完成后,解压模型文件:
tar -zxvf DeepSeek-7B.tar.gz
- 部署步骤
创建项目目录:在本地创建新的项目目录,用于存放部署相关文件和脚本。
mkdir deepseek_deployment
cd deepseek_deployment
编写推理脚本:使用 Python 编写推理脚本,如inference.py。在脚本中导入必要库,加载 DeepSeek 模型和分词器,实现推理功能。示例代码如下:
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# 加载分词器和模型
tokenizer = AutoTokenizer.from_pretrained("path/to/DeepSeek-7B")
model = AutoModelForCausalLM.from_pretrained("path/to/DeepSeek-7B", torch_dtype=torch.float16).cuda()
# 定义推理函数
def generate_text(prompt, max_length=100):
input_ids = tokenizer.encode(prompt, return_tensors='pt').cuda()
output = model.generate(input_ids, max_length=max_length, num_beams=5, early_stopping=True)
return tokenizer.decode(output[0], skip_special_tokens=True)
# 示例使用
prompt = "请介绍一下人工智能的发展趋势"
generated_text = generate_text(prompt)
print(generated_text)
请将path/to/DeepSeek-7B替换为实际的模型路径。
启动服务:若需将模型部署为服务,可使用 FastAPI 等框架。首先安装 FastAPI 和 uvicorn:
pip install fastapi uvicorn
然后编写服务脚本,如app.py:
from fastapi import FastAPI
from pydantic import BaseModel
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
app = FastAPI()
# 加载分词器和模型
tokenizer = AutoTokenizer.from_pretrained(