OpenManus 本地ollama 安装和使用指南

OpenManus 本地ollama 安装和使用指南

目录

环境要求

  • Python 3.9 或更高版本
  • Git
  • 支持的操作系统:Windows/Linux/MacOS

安装步骤

1. 克隆项目

git clone https://github.com/mannaandpoem/OpenManus.git
cd OpenManus

2. 创建虚拟环境(推荐)

python -m venv venv
# Windows
venv\Scripts\activate
# Linux/MacOS
source venv/bin/activate

3. 安装依赖

pip install -r requirements.txt

4. 安装 Ollama(可选)

如果你想使用本地模型,需要安装 Ollama:

  1. 访问 Ollama官网 下载并安装
  2. 拉取所需模型:
ollama pull llama3.2  # 或其他支持的模型

ollama pull llama3.2
  1. 启动 Ollama 服务:
ollama serve

5. 安装 Playwright(用于浏览器自动化)

playwright install

基本使用

1. 配置设置

在使用前,需要先配置 config/config.toml 文件:

# Global LLM configuration
[llm] #OLLAMA:
api_type = 'ollama'
model = "llama3.2"                     # The LLM model to use
base_url = "http://127.0.0.1:11434/v1" # API endpoint URL
api_key = "ollama"                     # Your API key
max_tokens = 4096                      # Maximum number of tokens in the response
temperature = 0.0                      # Controls randomness


[llm.vision] #OLLAMA VISION:
api_type = 'ollama'
model = "lama3.2-visionl"              # The vision model to use
base_url = "http://127.0.0.1:11434/v1" # API endpoint URL for vision model
api_key = "ollama"                     # Your API key for vision model
max_tokens = 4096                      # Maximum number of tokens in the response
temperature = 0.0                      # Controls randomness for vision model

# Optional configuration, Search settings.
[search]
# Search engine for agent to use. Default is "Google", can be set to "Baidu" or "DuckDuckGo" or "Bing".
engine = "Baidu"
# Fallback engine order. Default is ["DuckDuckGo", "Baidu", "Bing"] - will try in this order after primary engine fails.
fallback_engines = [ "Baidu", "Bing"]
# Seconds to wait before retrying all engines again when they all fail due to rate limits. Default is 60.
retry_delay = 60
# Maximum number of times to retry all engines when all fail. Default is 3.
max_retries = 3
# Language code for search results. Options: "en" (English), "zh" (Chinese), etc.
lang = "zh"
# Country code for search results. Options: "us" (United States), "cn" (China), etc.
country = "cn"
headless = false # 设置为 true 则不显示浏览器界面
[mcp]
server_reference = "app.mcp.server" # default server module reference

2. 运行示例

python run_flow.py

3. 基本API调用

from app.agent.manus import Manus

# 使用 Ollama
agent = Manus(use_ollama=True, ollama_model="llama2")
response = agent.run("你的指令")

常见问题

1. Playwright 相关问题

如果遇到 Playwright 浏览器启动失败,请确保:

  • 已正确执行 playwright install
  • 系统安装了必要的依赖
  • 防火墙设置允许浏览器访问

2. API 调用失败

  • Ollama:
    • 确保 Ollama 服务正在运行
    • 检查 ollama_base_url 配置是否正确
    • 验证所需模型是否已下载

3. 内存使用问题

  • 建议使用 8GB 或更多内存
  • 对于大型任务,可能需要调整内存限制

获取帮助

<think>好的,我现在需要帮助用户了解如何在本地部署Mistral大模型。首先,我需要收集所有相关的信息,特别是用户提供的引用内容,然后整合这些信息给出一个清晰的步骤指南。 根据引用[2],用户提到使用ollama可以一键安装各大开源模型,包括Mistral,这样本地部署就变得简单了,不需要复杂的代码。引用[3]则提到在Windows上部署OpenManus并接入Mistral模型,响应速度不错。而引用[1]虽然主要讲的是在Amazon SageMaker上部署,但可能对本地部署帮助不大,不过代码示例可能有参考价值。 首先,我需要确认本地部署的几种方法。用户提供的引用中提到了ollamaOpenManus,可能还有其他方法,比如直接使用Hugging Face的Transformers库。但根据引用[2][3],ollamaOpenManus是比较简便的方法,特别是ollama的一键安装,适合不想处理复杂代码的用户。 接下来,我应该分步骤说明这两种方法。对于ollama,步骤可能包括安装ollama,然后通过命令行拉取Mistral模型,最后运行模型。对于OpenManus,可能涉及下载软件、配置模型路径等。另外,Hugging Face的方法虽然需要更多代码,但也是一个可行选项,适合开发者。 需要确保每个步骤的命令正确,比如ollama安装命令是否正确,拉取模型的命令是否是ollama run mistral。同时,要提醒用户注意系统要求,比如内存存储空间,确保本地环境满足需求。 还要考虑用户可能遇到的问题,比如网络问题导致模型下载失败,或者系统兼容性问题。可能需要给出一些常见问题的解决办法,或者建议查阅相关文档。 最后,需要生成相关问题,这些问题应该围绕本地部署的其他方法、优化、资源需求等方面展开,帮助用户进一步了解相关内容。 现在需要整理这些思路,用清晰的中文分步骤说明,确保符合格式要求,比如行内公式用$...$,独立公式用$$...$$,但在这个问题中可能不太需要数学公式。同时,引用要正确标注,比如ollama的方法来自引用[2],OpenManus来自引用[3]。 总结,回答的结构应该是先介绍几种本地部署方法,每种方法详细步骤,注意事项,然后相关问题部分。确保语言简洁,步骤明确,用户容易跟随操作。</think>以下是在本地部署Mistral大模型的详细方法,包含两种主流方案: ### 方法一:通过Ollama一键部署(推荐) 1. **安装Ollama框架** - Windows/macOS/Linux系统均支持 ```bash # Linux安装命令 curl -fsSL https://ollama.com/install.sh | sh ``` 2. **拉取Mistral模型** ```bash ollama run mistral ``` 该命令会自动下载预量化版模型(约4.1GB),支持CPU/GPU混合计算[^2] 3. **交互测试** 安装完成后直接进入对话界面,输入问题如"解释量子力学"即可测试 ### 方法二:通过Hugging Face Transformers手动部署 1. **安装依赖库** ```python pip install transformers torch ``` 2. **编写推理代码** ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") inputs = tokenizer("法国的首都是哪里?", return_tensors="pt") outputs = model.generate(**inputs, max_length=50) print(tokenizer.decode(outputs[0])) ``` 3. **硬件要求** - 最低配置:16GB内存 + 20GB存储空间(FP16精度) - 推荐配置:NVIDIA GPU(8GB显存以上) + 量化加载[^3] ### 注意事项 1. 首次运行会自动下载模型文件,需保证网络稳定 2. Windows系统建议使用WSL2环境获得最佳性能 3. 可通过`model.save_pretrained("./mistral")`保存模型到本地
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老大白菜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值