基于Python与本地Ollama的智能语音唤醒助手实现

在这里插入图片描述

项目简介

本项目是一个基于 Python 的智能语音助手,集成了语音录制、语音识别、AI对话和语音合成功能。用户可以通过语音与本地部署的 Ollama 大模型进行自然对话。

技术架构

核心功能模块

  1. 语音录制 - 使用 sounddevice 录制用户语音
  2. 语音识别 - 使用 faster-whisper 将语音转换为文本
  3. AI对话 - 与本地 Ollama 模型进行文本对话
  4. 语音合成 - 使用 edge-tts 将AI回复转换为语音并播放

工作流程

用户语音输入 → 录音 → 语音识别 → AI对话 → 语音合成 → 语音播放

环境准备

1. 安装必需的 Python 包

# 音频处理相关
pip install sounddevice soundfile pyaudio

# 语音识别
pip install faster-whisper

# HTTP请求
pip install requests

# 语音合成(可选,如果使用edge-tts)
pip install edge-tts

2. 系统依赖

Windows 系统
# 使用 Chocolatey 安装 FFmpeg(推荐)
choco install ffmpeg

# 或者手动下载 FFmpeg 并添加到系统 PATH
# 下载地址:https://ffmpeg.org/download.html
Linux/macOS 系统
# Ubuntu/Debian
sudo apt update
sudo apt install ffmpeg

# macOS
brew install ffmpeg

3. Ollama 模型部署

# 安装 Ollama
curl -fsSL https://ollama.ai/install.sh | sh

# 拉取模型(选择其中一个)
ollama pull yi:9b
# 或者
ollama pull llama3-8b

# 启动 Ollama 服务
ollama serve

核心代码实现

完整源代码

import subprocess
import sounddevice as sd
import soundfile as sf
from faster_whisper import WhisperModel
import requests
import time  # 用于添加延迟

OLLAMA_MODEL = "yi:34b"  # 或者 llama3-8b,已在 Ollama 里拉取好的模型

# 录音函数,录制音频并保存为 input.wav
def record_audio(filename="input.wav", duration=5, fs=16000):
    print("🎤 正在录音,请开始说话...")
    audio = sd.rec(int(duration * fs), samplerate=fs, channels=1)
    sd.wait()
    sf.write(filename, audio, fs)
    print("✅ 录音完成")

# 语音识别函数,调用 WhisperModel 将音频转为文本
def transcribe_whisper(filename="input.wav"):
    print("🧠 Whisper 正在识别语音...")
    model = WhisperModel("medium", compute_type="int8")
    segments, _ = model.transcribe(filename, beam_size=5)
    text = "".join([seg.text for seg in segments])
    print(f"📝 识别结果:{text}")
    return text

# 与 Ollama 大模型对话,获取回复
def chat_with_ollama(prompt):
    print("💬 发送给 Ollama 中...")
    response = requests.post("http://127.0.0.1:11434/api/generate", json={
        "model": OLLAMA_MODEL,
        "prompt": prompt,
        "stream": False
    })
    answer = response.json()["response"]
    print(f"🤖 Ollama 回复:{answer}")
    return answer

# 语音合成与播放,将文本转为语音并播放
def speak_text(text, output="reply.wav"):
    """文本转语音并播放"""
    print("🔊 正在生成语音...")
    try:
        # 验证文本内容
        if not text.strip():
            print("❌ 无法合成空文本")
            return
            
        # 使用 YunyangNeural 男声
        tts_command = ["edge-tts", "--text", text, "--voice", "zh-CN-YunyangNeural", "--write-media", output]
        result = subprocess.run(tts_command, capture_output=True, text=True)
        
        # 检查命令是否成功执行
        if result.returncode != 0:
            print(f"❌ 语音合成失败: {result.stderr}")
            return
        
        # 检查文件是否存在
        import os
        if not os.path.exists(output):
            print(f"❌ 音频文件 {output} 未生成")
            return
            
        print("🔈 播放中...")
        subprocess.run(["ffplay", "-nodisp", "-autoexit", output])
        
    except Exception as e:
        print(f"❌ 语音合成或播放出错: {e}")

def is_wakeup_keyword(text, wakeup_keywords=[("一号助手", "yi hao zhu shou"), ("我的助手", "wo de zhu shou")]):
    """检查文本中是否包含唤醒关键词,支持中文文本和拼音匹配"""
    # 将输入文本转换为小写
    text = text.lower()
    
    # 移除标点符号
    import string
    text = text.translate(str.maketrans('', '', string.punctuation))
    
    # 分词处理(按空格分割)
    words = text.split()
    
    # 检查每个唤醒词
    for keyword, pinyin in wakeup_keywords:
        # 获取拼音分词
        pinyin_words = pinyin.split()
        
        # 检查中文匹配
        if keyword.lower() in text:
            return True
            
        # 检查拼音匹配(精确匹配)
        if len(pinyin_words) == 1:
            # 单词拼音匹配
            if pinyin_words[0] in words:
                return True
        else:
            # 多词拼音匹配 - 检查连续词语是否匹配拼音顺序
            for i in range(len(words) - len(pinyin_words) + 1):
                segment = words[i:i+len(pinyin_words)]
                if " ".join(segment) == pinyin:
                    return True
    return False

def delay(seconds):
    """简单的延迟函数,避免过度占用CPU资源"""
    time.sleep(seconds)
    
# 主流程:录音 -> 语音识别 -> AI对话 -> 语音合成与播放
if __name__ == "__main__":
    while True:
        print("👂 正在监听唤醒词...")
        record_audio("wakeup.wav", duration=3)  # 短录音用于唤醒检测
        wakeup_text = transcribe_whisper("wakeup.wav")
        
        if is_wakeup_keyword(wakeup_text):
            print(f"✅ 检测到唤醒词!开始交互...")
            record_audio()  # 录音
            user_text = transcribe_whisper()  # 语音转文本
            reply_text = chat_with_ollama(user_text)  # AI对话
            speak_text(reply_text)  # 语音合成与播放
        else:
            print("💤 未检测到唤醒词,继续监听...")
            
        # 添加延迟避免CPU过载
        delay(0.5)


功能详解

1. 语音录制模块

def record_audio(filename="input.wav", duration=5, fs=16000):
    print("🎤 正在录音,请开始说话...")
    audio = sd.rec(int(duration * fs), samplerate=fs, channels=1)
    sd.wait()
    sf.write(filename, audio, fs)
    print("✅ 录音完成")

技术要点:

  • 使用 sounddevice 进行实时音频录制
  • 采样率设置为 16kHz,单声道录制
  • 默认录制时长 5 秒
  • 使用 soundfile 保存为 WAV 格式

2. 语音识别模块

def transcribe_whisper(filename="input.wav"):
    print("🧠 Whisper 正在识别语音...")
    model = WhisperModel("medium", compute_type="int8")
    segments, _ = model.transcribe(filename, beam_size=5)
    text = "".join([seg.text for seg in segments])
    print(f"📝 识别结果:{text}")
    return text

技术要点:

  • 使用 faster-whisper 库,比原版 Whisper 更快
  • 选择 “medium” 模型,平衡准确性和速度
  • compute_type="int8" 量化加速,减少内存占用
  • beam_size=5 提高识别准确率

3. AI对话模块

def chat_with_ollama(prompt):
    print("💬 发送给 Ollama 中...")
    response = requests.post("http://localhost:11434/api/generate", json={
        "model": OLLAMA_MODEL,
        "prompt": prompt,
        "stream": False
    })
    answer = response.json()["response"]
    print(f"🤖 Ollama 回复:{answer}")
    return answer

技术要点:

  • 通过 HTTP API 与 Ollama 服务通信(支持本地或远程部署)
  • 支持多种模型:yi:9b、llama3-8b 等
  • stream=False 获取完整回复
  • 可配置本地部署(http://localhost:11434)或远程服务

4. 语音合成模块

def speak_text(text, output="reply.wav"):
    print("🔊 正在生成语音...")
    tts_command = f"echo '{text}' | edge-tts --voice zh-CN-XiaoxiaoNeural --write-media {output}"
    subprocess.run(tts_command, shell=True)
    print("🔈 播放中...")
    subprocess.run(["ffplay", "-nodisp", "-autoexit", output])

技术要点:

  • 使用 Microsoft Edge TTS 引擎
  • 选择中文女声 “zh-CN-XiaoxiaoNeural”
  • 使用 FFplay 播放生成的音频文件
  • 支持多种语音选择

5. 唤醒检测模块

``python
def is_wakeup_keyword(text, wakeup_keywords=[“一号助手”,“我的助手”]):
“”“检查文本中是否包含唤醒关键词”“”
text = text.lower()
for keyword in wakeup_keywords:
if keyword.lower() in text:
return True
return False


功能说明:
- 实现多唤醒词支持
- 不区分大小写匹配
- 可自定义唤醒词列表
- 添加了中文注释说明

## 使用说明

### 1. 启动准备

```bash
# 1. 确保 Ollama 服务运行
ollama serve

# 2. 运行语音助手
python v.py

2. 交互流程

  1. 程序启动后自动开始录音(5秒)
  2. 录音结束后进行语音识别
  3. 识别结果发送给 Ollama 模型
  4. AI 回复转换为语音并播放

性能优化建议

1. Whisper 模型选择

模型大小内存占用识别速度准确率
tiny~39MB最快较低
base~74MB中等
small~244MB中等良好
medium~769MB较慢很好
large~1550MB最慢最佳

2. 计算类型优化

# 不同计算类型的性能对比
model = WhisperModel("medium", compute_type="int8")    # 推荐:速度快,内存少
model = WhisperModel("medium", compute_type="float16") # 平衡:中等速度和精度
model = WhisperModel("medium", compute_type="float32") # 最高精度,最慢速度

3. 录音参数调优

# 根据使用场景调整参数
record_audio(duration=3, fs=16000)   # 短对话
record_audio(duration=10, fs=22050)  # 长对话,更高音质

故障排除

常见问题

  1. 录音设备问题

    # 查看可用音频设备
    import sounddevice as sd
    print(sd.query_devices())
    
  2. Ollama 连接失败

    # 检查 Ollama 服务状态
    curl http://localhost:11434/api/tags
    
  3. 语音合成失败

    # 测试 edge-tts
    edge-tts --list-voices | grep zh-CN
    
  4. FFmpeg 播放问题

    # 检查 FFmpeg 安装
    ffplay -version
    

扩展功能

1. 添加唤醒词检测

# 可集成 pvporcupine 实现唤醒词功能
pip install pvporcupine

2. 支持多轮对话

# 添加对话历史管理
conversation_history = []

3. 语音情感识别

# 可集成情感分析库
pip install transformers torch
  1. 低功耗监听 - 通过唤醒词机制减少不必要的资源消耗
    • 初始3秒短录音用于唤醒检测
    • 只有检测到唤醒词才激活完整功能
    • 有效降低CPU和内存使用率
  2. 中文优化 - 完全支持中文语音识别和合成
    • 支持中文唤醒词检测
    • 支持中文语音转文字
    • 支持中文文本转语音
  3. 拼音匹配增强 - 提升唤醒准确性和容错能力
    • 实现中英文混合唤醒词识别
    • 支持同音字匹配(如"一"与"依")
    • 支持纯拼音输入识别(如"yi hao zhu shou")
    • 智能纠错:对语音识别结果进行拼音级比对
    • 提高在嘈杂环境下的唤醒成功率
  4. 模块化设计 - 各个组件可独立升级和替换
    • 清晰的函数划分
    • 标准化的输入输出接口
    • 易于维护和扩展
  5. 良好的用户体验 - 包含详细的日志输出和错误处理
    • 彩色状态提示(录音、处理、播放等)
    • 完善的错误检测机制
    • 用户友好的交互设计
  6. 可扩展性强 - 易于集成新的大模型或语音服务
    • 可更换不同的语音识别引擎
    • 支持多种TTS语音模型
    • 可对接不同的大语言模型服务

总结

本项目展示了一个完整的语音交互系统的实现方案,通过整合多个开源工具和API,构建了一个实用的智能语音助手。系统具有良好的扩展性和可维护性,可根据需要进一步优化和扩展功能。

  • 项目展示了如何将语音技术与大语言模型结合
  • 提供了本地化部署的完整解决方案
  • 实现了从语音输入到语音输出的完整闭环
  • 可作为智能助手、智能家居控制等场景的基础框架
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老大白菜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值