《前后端面试题
》专栏集合了前后端各个知识模块的面试题,包括html,javascript,css,vue,react,java,Openlayers,leaflet,cesium,mapboxGL,threejs,nodejs,mangoDB,SQL,Linux… 。
文章目录
- 一、本文面试题目录
-
-
- 1. 请简述Transformer模型的基本结构和核心创新点。
- 2. Transformer与RNN、CNN相比,在处理序列数据时有哪些优势?
- 3. Transformer模型是在哪篇论文中提出的?其主要任务目标是什么?
- 4. 为什么Transformer能更好地捕捉长距离依赖关系?
- 5. Transformer中的“注意力机制”与传统RNN中的“注意力”有何区别?
- 6. 请解释Transformer的“自注意力”(Self - Attention)机制的含义。
- 7. Transformer的Encoder和Decoder分别由哪些模块组成?
- 8. 简述Transformer中Encoder和Decoder的协同工作流程。
- 9. Transformer模型的输入和输出分别是什么形式?如何处理不同长度的序列?
- 10. 为什么Transformer需要使用“位置编码”(Positional Encoding)?
-
- 二、120道Transformer面试题目录列表
一、本文面试题目录
1. 请简述Transformer模型的基本结构和核心创新点。
答案:
Transformer模型的基本结构由编码器(Encoder)和解码器(Decoder)两部分组成。编码器负责将输入序列转换为一系列高维表示,由多个相同的层堆叠而成,每层包含自注意力子层和前馈神经网络子层,以及用于正则化的层归一化和残差连接。解码器则基于编码器的输出生成输出序列,也由多个层堆叠而成,每层包含遮蔽多头自注意力机制、编码器-解码器注意力机制和前馈神经网络。
其核心创新点是引入了自注意力机制(Se