《前后端面试题
》专栏集合了前后端各个知识模块的面试题,包括html,javascript,css,vue,react,java,Openlayers,leaflet,cesium,mapboxGL,threejs,nodejs,mangoDB,SQL,Linux… 。
文章目录
- 一、本文面试题目录
-
-
- 54. 模型训练的基本流程是什么?请用PyTorch代码框架描述。
- 55. 什么是Epoch、Batch、Iteration?它们之间的关系是什么?
- 56. `DataLoader`和`Dataset`的作用是什么?如何自定义一个数据集?
- 57. `DataLoader`中的`batch_size`、`shuffle`、`num_workers`参数分别有什么作用?
- 58. 如何处理训练数据和验证数据?在训练过程中如何切换模型的训练/评估模式?
- 59. `model.train()`和`model.eval()`的区别是什么?
- 60. 什么是过拟合(Overfitting)?在PyTorch中如何防止过拟合?
- 61. 学习率(Learning Rate)的作用是什么?如何选择合适的学习率?
- 62. 什么是学习率调度器(Learning Rate Scheduler)?PyTorch中常用的调度器有哪些?
- 63. 如何在训练过程中保存和加载模型?`torch.save()`和`torch.load()`的注意事项是什么?
- 64. 保存模型时,保存`model.state_dict()`和保存整个`model`对象有何区别?
- 65. 如何加载预训练模型?如何冻结部分网络层的参数?
- 66. 什么是迁移学习(Transfer Learning)?在PyTorch中如何实现迁移学习?
- 67. 如何计算模型在验证集上的准确率(Accuracy)、精确率(Precision)、召回率(Recall)?
- 68. 如何使用TensorBoard可视化训练过程中的损失、准确率等指标?
- 69. 如何在训练过程中早停(Early Stopping)以防止过拟合?
- 70. 什么是混合精度训练(Mixed Precision Training)?PyTorch中如何实现?
-
- 二、120道PyTorch面试题目录列表
一、本文面试题目录
54. 模型训练的基本流程是什么?请用PyTorch代码框架描述。
PyTorch模型训练的基本流程是通过迭代优化模型参数以最小化损失函数的过程,主要包括以下步骤:
- 数据准备:加载训练数据和验证数据,通常使用
Dataset
和DataLoader
- 模型定义:创建神经网络模型
- 损失函数和优化器:选择合适的损失函数和优