Spark的算子分为两类:
一类叫做Transformation(转换),延迟加载,它会记录元数据信息,当计算任务触发Action,才会真正开始计算;
一类叫做Action(动作);
一个算子会产生多个RDD
RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合。
一、RDD创建方式
方式一:通过HDFS支持的文件系统系统创建,RDD里没有真正要计算的数据,只是记录了一下元数据
方式二:通过Scala集合或数组以并行化方式创建
二、RDD特点
1、一台机器上有多个分区;
2、一个函数会作用到一个分区;
3、RDD之间有一系列依赖;
4、如果是key-value类型,会有分区器;
5、RDD会有一个最佳位置;
三、RDD练习
val rdd1 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10))
val rdd2 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)).map(*2).sortBy(x=>x,true)
val rdd3 = rdd2.filter(>10)
val rdd2 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)).map(*2).sortBy(x=>x+“”,true)
val rdd2 = sc.parallelize(List(5,6,4,7,3,8,2,9,1,10)).map(*2).sortBy(x=>x.toString,true)
val rdd4 = sc.parallelize(Array(“a b c”, “d e f”, “h i j”))
rdd4.flatMap(_.split(’ ')).collect
val rdd5 = sc.parallelize(List(List(“a b c”, “a b b”),List(“e f g”, “a f g”), List(“h i j”, “a a b”)))
rdd5.flatMap(.flatMap(.split(" "))).collect
#union求并集,注意类型要一致
val rdd6 = sc.parallelize(List(5,6,4,7))
val rdd7 = sc.parallelize(List(1,2,3,4))
val rdd8 = rdd6.union(rdd7)
rdd8.distinct.sortBy(x=>x).collect
#intersection求交集
val rdd9 = rdd6.intersection(rdd7)
val rdd1 = sc.parallelize(List((“tom”, 1), (“jerry”, 2), (“kitty”, 3)))
val rdd2 = sc.parallelize(List((“jerry”, 9), (“tom”, 8), (“shuke”, 7)))
#join
val rdd3 = rdd1.join(rdd2)
val rdd3 = rdd1.leftOuterJoin(rdd2)
val rdd3 = rdd1.rightOuterJoin(rdd2)
#groupByKey
val rdd3 = rdd1 union rdd2
rdd3.groupByKey
rdd3.groupByKey.map(x=>(x._1,x._2.sum))
#WordCount, 第二个效率低
sc.textFile(“/root/words.txt”).flatMap(x=>x.split(" ")).map((,1)).reduceByKey(+).sortBy(.2,false).collect
sc.textFile(“/root/words.txt”).flatMap(x=>x.split(" ")).map((,1)).groupByKey.map(t=>(t._1, t._2.sum)).collect
#cogroup
val rdd1 = sc.parallelize(List((“tom”, 1), (“tom”, 2), (“jerry”, 3), (“kitty”, 2)))
val rdd2 = sc.parallelize(List((“jerry”, 2), (“tom”, 1), (“shuke”, 2)))
val rdd3 = rdd1.cogroup(rdd2)
val rdd4 = rdd3.map(t=>(t._1, t._2._1.sum + t._2._2.sum))
#cartesian笛卡尔积
val rdd1 = sc.parallelize(List(“tom”, “jerry”))
val rdd2 = sc.parallelize(List(“tom”, “kitty”, “shuke”))
val rdd3 = rdd1.cartesian(rdd2)
#spark action
val rdd1 = sc.parallelize(List(1,2,3,4,5), 2)
#collect
rdd1.collect
#reduce
val rdd2 = rdd1.reduce(+)
#count
rdd1.count
#top
rdd1.top(2)
#take
rdd1.take(2)
#first(similer to take(1))
rdd1.first
#takeOrdered
rdd1.takeOrdered(3)
四、高级算子方法
map是对每个元素操作, mapPartitions是对其中的每个partition操作
mapPartitionsWithIndex: 把每个partition中的分区号和对应的值拿出来
val func = (index: Int, iter: Iterator[(Int)]) => {
iter.toList.map(x => “[partID:” + index + ", val: " + x + “]”).iterator
}
val rdd1 = sc.parallelize(List(1,2,3,4,5,6,7,8,9), 2)
rdd1.mapPartitionsWithIndex(func).collect
aggregate: 对RDD里元素进行聚合
def func1(index: Int, iter: Iterator[(Int)]) : Iterator[String] = {
iter.toList.map(x => “[partID:” + index + ", val: " + x + “]”).iterator
}
val rdd1 = sc.parallelize(List(1,2,3,4,5,6,7,8,9), 2)
rdd1.mapPartitionsWithIndex(func1).collect
###是action操作, 第一个参数是初始值, 二:是2个函数[每个函数都是2个参数(第一个参数:先对个个分区进行合并, 第二个:对个个分区合并后的结果再进行合并), 输出一个参数]
###0 + (0+1+2+3+4 + 0+5+6+7+8+9)
rdd1.aggregate(0)(+, +)
rdd1.aggregate(0)(math.max(_, _), _ + _)
###5和1比, 得5再和234比得5 --> 5和6789比,得9 --> 5 + (5+9)
rdd1.aggregate(5)(math.max(_, _), _ + _)
val rdd2 = sc.parallelize(List(“a”,“b”,“c”,“d”,“e”,“f”),2)
def func2(index: Int, iter: Iterator[(String)]) : Iterator[String] = {
iter.toList.map(x => “[partID:” + index + “, val: " + x + “]”).iterator
}
rdd2.aggregate(”")(_ + _, _ + )
rdd2.aggregate(“=”)( + _, _ + _)
val rdd3 = sc.parallelize(List(“12”,“23”,“345”,“4567”),2)
rdd3.aggregate(“”)((x,y) => math.max(x.length, y.length).toString, (x,y) => x + y)
val rdd4 = sc.parallelize(List(“12”,“23”,“345”,“”),2)
rdd4.aggregate(“”)((x,y) => math.min(x.length, y.length).toString, (x,y) => x + y)
val rdd5 = sc.parallelize(List(“12”,“23”,“”,“345”),2)
rdd5.aggregate(“”)((x,y) => math.min(x.length, y.length).toString, (x,y) => x + y)
aggregateByKey:对RDD里元素先分区再聚合
val pairRDD = sc.parallelize(List( (“cat”,2), (“cat”, 5), (“mouse”, 4),(“cat”, 12), (“dog”, 12), (“mouse”, 2)), 2)
def func2(index: Int, iter: Iterator[(String, Int)]) : Iterator[String] = {
iter.toList.map(x => “[partID:” + index + ", val: " + x + “]”).iterator
}
pairRDD.mapPartitionsWithIndex(func2).collect
pairRDD.aggregateByKey(0)(math.max(_, _), _ + ).collect
pairRDD.aggregateByKey(100)(math.max(, _), _ + _).collect
checkpoint
sc.setCheckpointDir(“hdfs://node-1.itcast.cn:9000/ck”)
val rdd = sc.textFile(“hdfs://node-1.itcast.cn:9000/wc”).flatMap(.split(" ")).map((, 1)).reduceByKey(+)
rdd.checkpoint
rdd.isCheckpointed
rdd.count
rdd.isCheckpointed
rdd.getCheckpointFile
coalesce, repartition
val rdd1 = sc.parallelize(1 to 10, 10)
val rdd2 = rdd1.coalesce(2, false)
rdd2.partitions.length
collectAsMap : Map(b -> 2, a -> 1)
val rdd = sc.parallelize(List((“a”, 1), (“b”, 2)))
rdd.collectAsMap
combineByKey : 和reduceByKey是相同的效果
###第一个参数x:原封不动取出来, 第二个参数:是函数, 局部运算, 第三个:是函数, 对局部运算后的结果再做运算
###每个分区中每个key中value中的第一个值, (hello,1)(hello,1)(good,1)–>(hello(1,1),good(1))–>x就相当于hello的第一个1, good中的1
val rdd1 = sc.textFile(“hdfs://master:9000/wordcount/input/”).flatMap(.split(" ")).map((, 1))
val rdd2 = rdd1.combineByKey(x => x, (a: Int, b: Int) => a + b, (m: Int, n: Int) => m + n)
rdd1.collect
rdd2.collect
###当input下有3个文件时(有3个block块, 不是有3个文件就有3个block, ), 每个会多加3个10
val rdd3 = rdd1.combineByKey(x => x + 10, (a: Int, b: Int) => a + b, (m: Int, n: Int) => m + n)
rdd3.collect
val rdd4 = sc.parallelize(List(“dog”,“cat”,“gnu”,“salmon”,“rabbit”,“turkey”,“wolf”,“bear”,“bee”), 3)
val rdd5 = sc.parallelize(List(1,1,2,2,2,1,2,2,2), 3)
val rdd6 = rdd5.zip(rdd4)
val rdd7 = rdd6.combineByKey(List(_), (x: List[String], y: String) => x :+ y, (m: List[String], n: List[String]) => m ++ n)
countByKey
val rdd1 = sc.parallelize(List((“a”, 1), (“b”, 2), (“b”, 2), (“c”, 2), (“c”, 1)))
rdd1.countByKey
rdd1.countByValue
filterByRange
val rdd1 = sc.parallelize(List((“e”, 5), (“c”, 3), (“d”, 4), (“c”, 2), (“a”, 1)))
val rdd2 = rdd1.filterByRange(“b”, “d”)
rdd2.collect
flatMapValues : Array((a,1), (a,2), (b,3), (b,4))
val rdd3 = sc.parallelize(List((“a”, “1 2”), (“b”, “3 4”)))
val rdd4 = rdd3.flatMapValues(_.split(" "))
rdd4.collect
foldByKey
val rdd1 = sc.parallelize(List(“dog”, “wolf”, “cat”, “bear”), 2)
val rdd2 = rdd1.map(x => (x.length, x))
val rdd3 = rdd2.foldByKey(“”)(+)
val rdd = sc.textFile(“hdfs://node-1.itcast.cn:9000/wc”).flatMap(.split(" ")).map((, 1))
rdd.foldByKey(0)(+)
foreachPartition
val rdd1 = sc.parallelize(List(1, 2, 3, 4, 5, 6, 7, 8, 9), 3)
rdd1.foreachPartition(x => println(x.reduce(_ + _)))
keyBy : 以传入的参数做key
val rdd1 = sc.parallelize(List(“dog”, “salmon”, “salmon”, “rat”, “elephant”), 3)
val rdd2 = rdd1.keyBy(_.length)
rdd2.collect
keys values
val rdd1 = sc.parallelize(List(“dog”, “tiger”, “lion”, “cat”, “panther”, “eagle”), 2)
val rdd2 = rdd1.map(x => (x.length, x))
rdd2.keys.collect
rdd2.values.collect
五、统计网站不同学科前两名
方式一:数据量大的话,可以把数据放硬盘上
package cn.itcast.spark.day2
import java.net.URL
import org.apache.spark.{SparkConf, SparkContext}
/**
* 根据指定的网站, 取出点击量前三的
* Created by root on 2016/5/16.
*/
object AdvUrlCount {
def main(args: Array[String]) {
//从数据库中加载规则
val arr = Array("java.itcast.cn", "php.itcast.cn", "net.itcast.cn")
val conf = new SparkConf().setAppName("AdvUrlCount").setMaster("local[2]")
val sc = new SparkContext(conf)
//rdd1将数据切分,元组中放的是(URL, 1)
val rdd1 = sc.textFile("c://itcast.log").map(line => {
val f = line.split("\t")
(f(1), 1)
})
val rdd2 = rdd1.reduceByKey(_ + _)
val rdd3 = rdd2.map(t => {
val url = t._1
val host = new URL(url).getHost
(host, url, t._2)
})
//println(rdd3.collect().toBuffer)
// val rddjava = rdd3.filter(_._1 == "java.itcast.cn")
// val sortdjava = rddjava.sortBy(_._3, false).take(3)
// val rddphp = rdd3.filter(_._1 == "php.itcast.cn")
for (ins <- arr) {
val rdd = rdd3.filter(_._1 == ins)
val result= rdd.sortBy(_._3, false).take(3)
//通过JDBC向数据库中存储数据
//id,学院,URL,次数, 访问日期
println(result.toBuffer)
}
//println(sortdjava.toBuffer)
sc.stop()
}
}
方式二:自定义分区,将相同学科放在同一个分区
package cn.itcast.spark.day3
import java.net.URL
import org.apache.spark.{HashPartitioner, Partitioner, SparkConf, SparkContext}
import scala.collection.mutable
/**
* Created by root on 2016/5/18.
*/
object UrlCountPartition {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("UrlCountPartition").setMaster("local[2]")
val sc = new SparkContext(conf)
//rdd1将数据切分,元组中放的是(URL, 1)
val rdd1 = sc.textFile("c://itcast.log").map(line => {
val f = line.split("\t")
(f(1), 1)
})
val rdd2 = rdd1.reduceByKey(_ + _)
val rdd3 = rdd2.map(t => {
val url = t._1
val host = new URL(url).getHost
(host, (url, t._2))
})
val ints = rdd3.map(_._1).distinct().collect()
val hostParitioner = new HostParitioner(ints)
// val rdd4 = rdd3.partitionBy(new HashPartitioner(ints.length))
val rdd4 = rdd3.partitionBy(hostParitioner).mapPartitions(it => {
it.toList.sortBy(_._2._2).reverse.take(2).iterator
})
rdd4.saveAsTextFile("c://out4")
//println(rdd4.collect().toBuffer)
sc.stop()
}
}
/**
* 决定了数据到哪个分区里面
* @param ins
*/
class HostParitioner(ins: Array[String]) extends Partitioner {
val parMap = new mutable.HashMap[String, Int]()
var count = 0
for(i <- ins){
parMap += (i -> count)
count += 1
}
override def numPartitions: Int = ins.length
override def getPartition(key: Any): Int = {
parMap.getOrElse(key.toString, 0)
}
}
方式三:数据量大的话,可能会内存溢出
package cn.itcast.spark.day2
import java.net.URL
import org.apache.spark.{SparkConf, SparkContext}
/**
* 取出网站点击前三的
* Created by root on 2016/5/16.
*/
object UrlCount {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("UrlCount").setMaster("local[2]")
val sc = new SparkContext(conf)
//rdd1将数据切分,元组中放的是(URL, 1)
val rdd1 = sc.textFile("D:\\itcast-大数据\\day29\\itcast.log").map(line => {
val f = line.split("\t")
(f(1), 1)
})
val rdd2 = rdd1.reduceByKey(_+_)
val rdd3 = rdd2.map(t => {
val url = t._1
val host = new URL(url).getHost
(host, url, t._2)
})
val rdd4 = rdd3.groupBy(_._1).mapValues(it => {
it.toList.sortBy(_._3).reverse.take(3)
})
println(rdd2.collect().toBuffer)
sc.stop()
}
}
六、计算用户在基站停留时间最长的两个基站
方式一:
package cn.itcast.spark.day2
import org.apache.spark.{SparkConf, SparkContext}
/**
* 根据日志统计出每个用户在站点所呆时间最长的前2个的信息
* 1, 先根据"手机号_站点"为唯一标识, 算一次进站出站的时间, 返回(手机号_站点, 时间间隔)
* 2, 以"手机号_站点"为key, 统计每个站点的时间总和, ("手机号_站点", 时间总和)
* 3, ("手机号_站点", 时间总和) --> (手机号, 站点, 时间总和)
* 4, (手机号, 站点, 时间总和) --> groupBy().mapValues(以时间排序,取出前2个) --> (手机->((m,s,t)(m,s,t)))
* Created by root on 2016/5/16.
*/
object UserLocation {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("ForeachDemo").setMaster("local[2]")
val sc = new SparkContext(conf)
//sc.textFile("c://bs_log").map(_.split(",")).map(x => (x(0), x(1), x(2), x(3)))
val mbt = sc.textFile("c://bs_log").map( line => {
val fields = line.split(",")
val eventType = fields(3)
val time = fields(1)
val timeLong = if(eventType == "1") -time.toLong else time.toLong
(fields(0) + "_" + fields(2), timeLong)
})
//println(mbt.collect().toBuffer)
//(18611132889_9F36407EAD0629FC166F14DDE7970F68,54000)
val rdd1 = mbt.groupBy(_._1).mapValues(_.foldLeft(0L)(_ + _._2))
val rdd2 = rdd1.map( t => {
val mobile_bs = t._1
val mobile = mobile_bs.split("_")(0)
val lac = mobile_bs.split("_")(1)
val time = t._2
(mobile, lac, time)
})
val rdd3 = rdd2.groupBy(_._1)
//ArrayBuffer((18688888888,List((18688888888,16030401EAFB68F1E3CDF819735E1C66,87600), (18688888888,9F36407EAD0629FC166F14DDE7970F68,51200))), (18611132889,List((18611132889,16030401EAFB68F1E3CDF819735E1C66,97500), (18611132889,9F36407EAD0629FC166F14DDE7970F68,54000))))
val rdd4 = rdd3.mapValues(it => {
it.toList.sortBy(_._3).reverse.take(2)
})
println(rdd4.collect().toBuffer)
sc.stop()
}
}
方式二; 推荐
package cn.itcast.spark.day2
import org.apache.spark.{SparkConf, SparkContext}
/**
* ((fields(0),fields(2)), timeLong) -->reduceByKey(_+_).map --> (lac, (mobile, time))
* -->rdd1.join(rdd2).map-->(mobile, lac, time, x, y)
* --> groupBy().mapValues(以时间排序,取出前2个) --> (手机->((m,s,t)(m,s,t)))
* Created by root on 2016/5/16.
*/
object AdvUserLocation {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("AdvUserLocation").setMaster("local[2]")
val sc = new SparkContext(conf)
val rdd0 = sc.textFile("c://bs_log").map( line => {
val fields = line.split(",")
val eventType = fields(3)
val time = fields(1)
val timeLong = if(eventType == "1") -time.toLong else time.toLong
((fields(0),fields(2)), timeLong)
})
val rdd1 = rdd0.reduceByKey(_+_).map(t => {
val mobile = t._1._1
val lac = t._1._2
val time = t._2
(lac, (mobile, time))
})
val rdd2 = sc.textFile("c://lac_info.txt").map(line => {
val f = line.split(",")
//(基站ID, (经度,纬度))
(f(0), (f(1), f(2)))
})
//rdd1.join(rdd2)-->(CC0710CC94ECC657A8561DE549D940E0,((18688888888,1300),(116.303955,40.041935)))
val rdd3 = rdd1.join(rdd2).map(t => {
val lac = t._1
val mobile = t._2._1._1
val time = t._2._1._2
val x = t._2._2._1
val y = t._2._2._2
(mobile, lac, time, x, y)
})
//rdd4分组后的
val rdd4 = rdd3.groupBy(_._1)
val rdd5 = rdd4.mapValues(it => {
it.toList.sortBy(_._3).reverse.take(2)
})
println(rdd1.join(rdd2).collect().toBuffer)
// println(rdd5.collect().toBuffer)
rdd5.saveAsTextFile("c://out")
sc.stop()
}
}