今天给大家演示一个 ACE-Step 音频生成与处理的 ComfyUI 工作流。这个工作流的重点在于通过加载 ace_step_v1_3.5b.safetensors
模型,结合文本编码与采样机制,实现从歌词文本到音频片段的生成,并且支持多语言歌词的输入与音频保存输出。整个流程包含模型加载、文本与潜空间的处理、采样生成、音频解码及多格式保存等环节,能直观展示如何利用 ComfyUI 构建完整的音乐生成工作流。
工作流介绍
该工作流整体上分为模型加载、潜空间初始化与操作、文本歌词编码、采样生成、音频解码以及多格式输出几个核心阶段。通过 CheckpointLoaderSimple
加载的 ACE-Step 核心模型负责生成音频潜变量,结合 TextEncodeAceStepAudio
实现歌词内容的条件编码,再由 KSampler
在潜空间中采样,最后通过 VAEDecodeAudio
将潜变量解码为可播放音频文件,并支持输出为 MP3、FLAC、Opus 等格式。
核心模型
工作流核心依赖的是 ACE-Step v1 3.5b 模型,这是一个面向音乐生成和多语言歌词转音频的关键模型。它负责在潜空间中承载音频特征,并支持歌词输入与旋律生成的结合,保证生成音频在音质、旋律感和语言适配上的平衡。
模型名称 | 说明 |
---|---|
ace_step_v1_3.5b.safetensors | ACE-Step 音频生成核心模型,支持歌词文本到音乐音频的生成,兼顾多语言输入 |
Node节点
该工作流使用了多个核心节点来完成从歌词到音频的完整链路:CheckpointLoaderSimple
用于模型加载;TextEncodeAceStepAudio
将歌词与提示词转为条件向量;EmptyAceStepLatentAudio
与 VAEEncodeAudio
处理潜变量初始化与编码;KSampler
实现潜空间采样;VAEDecodeAudio
解码潜变量为音频;SaveAudioMP3
、SaveAudio
、SaveAudioOpus
负责保存不同音频格式,形成完整输出链路。
节点名称 | 说明 |
---|---|
CheckpointLoaderSimple | 加载 ACE-Step 模型、CLIP 与 VAE,作为核心起点 |
TextEncodeAceStepAudio | 将歌词与提示词编码为条件向量,用于指导音频生成 |
EmptyAceStepLatentAudio | 初始化空白的音频潜空间,用于采样 |
VAEEncodeAudio | 将已有音频编码为潜变量,支持再编辑或重绘 |
ModelSamplingSD3 | 调整模型采样方式,优化生成表现 |
LatentOperationTonemapReinhard | 潜空间操作节点,用于控制动态范围 |
LatentApplyOperationCFG | 在潜空间应用操作并输出模型条件 |
KSampler | 在潜变量空间进行迭代采样,生成潜音频结果 |
ConditioningZeroOut | 清空或调整条件输入,便于控制生成偏差 |
VAEDecodeAudio | 将潜空间音频解码为真实音频波形 |
SaveAudio / SaveAudioMP3 / SaveAudioOpus | 输出最终音频文件,支持多种格式保存 |
工作流程
该工作流的执行过程分为六个主要阶段:首先由 CheckpointLoaderSimple
加载 ACE-Step 模型及其依赖的 CLIP 和 VAE 模块,确保后续节点能够在统一的潜空间环境下运行。接着通过 EmptyAceStepLatentAudio
初始化潜空间音频基底,或使用 VAEEncodeAudio
对现有音频进行潜空间编码,为重绘和再创作提供基础。随后利用 TextEncodeAceStepAudio
将歌词和提示词转为条件向量,再结合 ConditioningZeroOut
调整条件输入,从而为音频采样提供定向引导。接下来,KSampler
在潜空间中进行迭代采样,并通过 ModelSamplingSD3
和 LatentOperationTonemapReinhard
、LatentApplyOperationCFG
等节点优化潜变量表现。采样生成的潜变量通过 VAEDecodeAudio
转换为可听音频,最终使用 SaveAudio
、SaveAudioMP3
、SaveAudioOpus
等节点导出多格式文件,实现完整的音频生成与保存链路。
流程序号 | 流程阶段 | 工作描述 | 使用节点 |
---|---|---|---|
1 | 模型加载 | 加载 ACE-Step 模型及 CLIP、VAE,为工作流建立核心依赖 | CheckpointLoaderSimple |
2 | 潜空间准备 | 初始化潜变量或将现有音频编码为潜空间数据 | EmptyAceStepLatentAudio, VAEEncodeAudio |
3 | 文本条件处理 | 对歌词与提示进行编码,形成生成音频的条件输入 | TextEncodeAceStepAudio, ConditioningZeroOut |
4 | 潜空间采样 | 在潜变量空间中迭代采样,结合模型优化操作提升生成质量 | KSampler, ModelSamplingSD3, LatentOperationTonemapReinhard, LatentApplyOperationCFG |
5 | 音频解码 | 将生成的潜变量转换为真实音频波形 | VAEDecodeAudio |
6 | 音频输出 | 保存为不同格式音频文件,便于后续应用与分享 | SaveAudio, SaveAudioMP3, SaveAudioOpus |
应用场景
该工作流适用于音乐创作、虚拟偶像歌曲生成、多语言歌词实验及音频内容生产等多种场景。在实际应用中,创作者可以通过输入歌词与风格提示,快速生成带有特定旋律和语言特征的音频片段;音乐制作人可以利用 VAE 编码与潜空间再采样对已有作品进行二次创作;教育和研究领域则可通过多语言输入,探索跨文化的歌词与旋律生成方式。不同的保存格式输出也使得生成结果能够灵活应用在音频分享、游戏配乐、短视频背景音乐等环境中。
应用场景 | 使用目标 | 典型用户 | 展示内容 | 实现效果 |
---|---|---|---|---|
原创音乐创作 | 将歌词与风格提示转为完整音频片段 | 独立音乐人、作曲人 | 输入歌词与风格描述,输出成品音乐 | 快速生成原创旋律与伴奏 |
虚拟偶像歌曲生成 | 为虚拟角色创作定制歌曲 | VTuber、虚拟偶像运营方 | 多语言歌词与角色风格化音频 | 提升角色内容生产效率 |
多语言歌词实验 | 测试不同语言输入下的旋律与发音效果 | 研究人员、语言爱好者 | 中文、日文、韩文、法文等歌词输入示例 | 跨语言的音频生成与表现力验证 |
音乐二创与混音 | 在已有音频基础上进行潜空间再生成 | 音乐制作人、混音师 | 输入现有音频并进行潜空间再采样 | 创作衍生作品或混音版本 |
多格式音频输出 | 满足不同传播与发布渠道的需要 | 普通用户、媒体平台运营者 | 输出 MP3、FLAC、Opus 等音频格式 | 提供多样化的文件支持与适配 |
开发与应用
更多 AIGC 与 ComfyUI工作流 相关研究学习内容请查阅:
更多内容桌面应用开发和学习文档请查阅:
AIGC工具平台Tauri+Django环境开发,支持局域网使用
AIGC工具平台Tauri+Django常见错误与解决办法
AIGC工具平台Tauri+Django内容生产介绍和使用
AIGC工具平台Tauri+Django开源ComfyUI项目介绍和使用
AIGC工具平台Tauri+Django开源git项目介绍和使用