YOLOv8+ Deepsort+Pyqt5车速检测系统

图片

向AI转型的程序员都关注公众号 机器学习AI算法工程

该系统通过YOLOv8进行高效的目标检测与分割,结合DeepSORT算法完成目标的实时跟踪,并利用GPU加速技术提升处理速度。系统支持模块化设计,可导入其他权重文件以适应不同场景需求,同时提供自定义配置选项,如显示标签和保存结果等。

在这里插入图片描述

1. 引言

随着城市交通压力的增加,智能交通系统(ITS)成为缓解交通拥堵、提高道路安全的重要手段。车辆检测与测速作为ITS的核心模块之一,对提升交通管理效率具有重要意义。YOLOv8和DeepSORT作为当前目标检测与跟踪领域的领先算法,其结合使用能够显著提升系统的实时性和准确性。本文提出了一种基于YOLOv8、DeepSORT和PyQt5的车速检测系统,旨在为交通管理和智能监控提供高效、可靠的解决方案。

2. 系统架构

2.1 YOLOv8算法介绍

通过单次前向传播即可预测图像中的目标位置和类别。其特点包括:

实时性能:YOLOv8专为实时应用设计,能够在视频流中快速检测目标。

高准确性:利用最新的卷积神经网络架构,在各种环境下保持高准确率。

易于集成:YOLOv8的输出可以直接用于后续的跟踪算法,无需复杂的预处理

2.2 DeepSORT算法介绍

DeepSORT算法的核心在于其对目标的外观特征和运动特征的联合使用,以及对目标匹配问题的优化处理。该算法通过融合目标检测的结果,结合匈牙利算法和卡尔曼滤波等技术,实现对多个目标的持续跟踪。

DeepSORT算法的主要步骤:

目标检测:DeepSORT算法依赖于目标检测器来确定视频中每一帧的目标位置。常用的目标检测器包括YOLO、Faster R-CNN等。检测器的输出通常包括目标的边界框(bounding box)和类别。

特征提取:DeepSORT使用深度学习模型来提取目标的外观特征。这些特征对于目标的再识别(re-identification,简称Re-ID)至关重要,因为即使目标在视频中被临时遮挡或丢失,这些特征也能帮助算法重新识别和关联目标。

匹配和跟踪:DeepSORT算法中的匹配过程涉及到计算检测框和预测框之间的相似度,并使用匈牙利算法来找到最优匹配。这个过程还包括卡尔曼滤波器的使用,它根据目标的历史运动信息来预测其在下一帧中的位置。

卡尔曼滤波:用于预测目标在下一帧中的位置。

匈牙利算法:用于计算检测框和预测框之间的最优匹配。

级联匹配:DeepSORT中的级联匹配是一种特殊的机制,它首先尝试将检测结果与高置信度的轨迹进行匹配,然后再与低置信度的轨迹进行匹配。这有助于提高匹配的准确性,尤其是在目标被遮挡或短暂消失时。

轨迹管理:DeepSORT维护每个目标的轨迹,并对新检测到的目标初始化新的轨迹。它还设置了确认状态(confirmed)和未确认状态(unconfirmed),以处理遮挡和临时丢失的情况。

DeepSORT算法流程:

在这里插入图片描述

通过深度学习提取特征并结合卡尔曼滤波预测目标轨迹。其优势在于:

对遮挡和遮挡恢复能力强。

准确性高:在MOT挑战赛中表现优异。

支持多目标跟踪:能够同时跟踪多个目标并计算其速度和轨迹。

谷歌原始deepsort 源码下载地址:

https://drive.google.com/drive/folders/1kna8eWGrSfzaR6DtNJ8_GchGgPMv3VC8

2.3 PyQt5界面设计

PyQt5是一种基于Python的跨平台GUI开发框架,用于构建用户友好的可视化界面。本系统通过PyQt5实现了以下功能:

显示实时检测结果。

提供自定义配置选项,如显示标签、保存结果等。

支持模块化导入其他权重文件进行识别和跟踪。

2.4 车速计算方法

车速计算是本系统的核心功能之一,通过以下步骤实现:

检测帧间距离:利用YOLOv8检测到的目标位置计算两帧之间的距离。

转换为实际距离:结合摄像头焦距和视场角将像素距离转换为实际距离。

计算速度:根据时间间隔计算目标速度。

在这里插入图片描述

3. 创新点

1. 高效GPU加速机制

YOLOv8和DeepSORT均支持GPU加速,显著提升了系统的实时性。在Jetson Nano设备上,YOLOv8的推理速度可达140FPS。

2. 模块化设计与扩展性

系统采用模块化设计,支持导入其他权重文件以适应不同场景需求。此外,用户可通过PyQt5界面自定义配置选项。

3. 实时性与准确性平衡

YOLOv8和DeepSORT的结合实现了高精度与实时性的平衡。YOLOv8确保了快速检测,而DeepSORT则保证了跟踪的准确性。

4. 结论与展望

本文提出的基于YOLOv8、DeepSORT和PyQt5的车速检测系统,在交通管理和智能监控领域展现了显著优势。其高效的检测与跟踪能力、友好的用户界面以及强大的扩展性,使其成为智慧城市建设和智能交通发展的重要工具。

未来研究方向包括:

提高模型泛化能力 :通过迁移学习进一步优化模型,使其能够适应更多样化的场景。

扩展应用场景 :将系统应用于无人机监控、工业自动化等领域,探索更多可能性。

引入边缘计算 :通过边缘计算设备部署系统,降低延迟并提高实时性。

融合多传感器数据 :结合激光雷达、毫米波雷达等传感器数据,进一步提升系统的鲁棒性和准确性。

机器学习算法AI大数据技术

 搜索公众号添加: datanlp

图片

长按图片,识别二维码

阅读过本文的人还看了以下文章:

实时语义分割ENet算法,提取书本/票据边缘

整理开源的中文大语言模型,以规模较小、可私有化部署、训练成本较低的模型为主

《大语言模型》PDF下载

动手学深度学习-(李沐)PyTorch版本

YOLOv9电动车头盔佩戴检测,详细讲解模型训练

TensorFlow 2.0深度学习案例实战

基于40万表格数据集TableBank,用MaskRCNN做表格检测

《基于深度学习的自然语言处理》中/英PDF

Deep Learning 中文版初版-周志华团队

【全套视频课】最全的目标检测算法系列讲解,通俗易懂!

《美团机器学习实践》_美团算法团队.pdf

《深度学习入门:基于Python的理论与实现》高清中文PDF+源码

《深度学习:基于Keras的Python实践》PDF和代码

特征提取与图像处理(第二版).pdf

python就业班学习视频,从入门到实战项目

2019最新《PyTorch自然语言处理》英、中文版PDF+源码

《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码

《深度学习之pytorch》pdf+附书源码

PyTorch深度学习快速实战入门《pytorch-handbook》

【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》

《Python数据分析与挖掘实战》PDF+完整源码

汽车行业完整知识图谱项目实战视频(全23课)

李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材

笔记、代码清晰易懂!李航《统计学习方法》最新资源全套!

《神经网络与深度学习》最新2018版中英PDF+源码

将机器学习模型部署为REST API

FashionAI服装属性标签图像识别Top1-5方案分享

重要开源!CNN-RNN-CTC 实现手写汉字识别

yolo3 检测出图像中的不规则汉字

同样是机器学习算法工程师,你的面试为什么过不了?

前海征信大数据算法:风险概率预测

【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类

VGG16迁移学习,实现医学图像识别分类工程项目

特征工程(一)

特征工程(二) :文本数据的展开、过滤和分块

特征工程(三):特征缩放,从词袋到 TF-IDF

特征工程(四): 类别特征

特征工程(五): PCA 降维

特征工程(六): 非线性特征提取和模型堆叠

特征工程(七):图像特征提取和深度学习

如何利用全新的决策树集成级联结构gcForest做特征工程并打分?

Machine Learning Yearning 中文翻译稿

蚂蚁金服2018秋招-算法工程师(共四面)通过

全球AI挑战-场景分类的比赛源码(多模型融合)

斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)

python+flask搭建CNN在线识别手写中文网站

中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程

不断更新资源

深度学习、机器学习、数据分析、python

 搜索公众号添加: datayx  

图片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值