【大学生数学建模竞赛】2017年数模竞赛C题通关指南

目录

一、竞赛背景引入

二、2017 年数模竞赛 C 题题目解析

2.1 赛题背景与要求介绍

2.2 问题一:数据关系与准则分析

2.3 问题二:模型建立与误差分析

2.4 问题三:数据量和颜色维度影响探讨

三、代码实现

3.1 准备工作

3.2 数据读取与预处理

3.3 模型构建与训练代码

3.4 误差计算与分析代码

3.5 数据量和颜色维度影响实验代码

四、结果展示与分析

4.1 总结与启示


一、竞赛背景引入

在大学生的学术江湖中,全国大学生数学建模竞赛那可是响当当的存在,堪称规模最大的课外科技活动之一 。自 1992 年创办以来,它就如同一位见证者,每年如期而至,见证着无数大学生的智慧碰撞,如今已然成为世界上规模最大的数学建模竞赛。这场竞赛可不简单,它就像是一个多面熔炉,着重培养学生的创新意识和创造能力,训练大家快速获取信息和资料的能力,还能锻炼快速掌握新知识的技能,团队合作意识与精神也在这个过程中不断强化,就连写作技能和排版技术也能得到提升。

2017 年的这场数学建模竞赛,更是吸引了来自全国 34 个省 / 市 / 区 ,甚至包括香港、澳门和台湾地区,以及新加坡和澳大利亚的 1418 所院校 / 校区、36375 个队、近 11 万名大学生报名参加,那场面,简直是高手云集,竞争相当激烈!而今天,咱们就把目光聚焦在专科组的 C 题上,一起揭开它神秘的面纱,看看它背后隐藏着怎样的解题奥秘,又能用怎样的代码来实现我们的解题思路 。

二、2017 年数模竞赛 C 题题目解析

2.1 赛题背景与要求介绍

2017 年高教社杯全国大学生数学建模竞赛 C 题聚焦 “颜色与物质浓度辨识” 。在化学、生物等众多领域,准确检测物质浓度是一项极为关键的任务 。传统的比色法作为常用手段,是把待测物质制备成溶液后滴在特定的白色试纸表面,等其充分反应以后获得一张有颜色的试纸,再把该颜色试纸与一个标准比色卡进行对比,以此来确定待测物质的浓度档位 。但由于每个人对颜色的敏感程度存在差异,再加上观测时不可避免的误差,这种方法在精度上大打折扣 。随着照相技术的迅猛发展以及颜色分辨率的不断提高,建立颜色读数和物质浓度之间精确的数量关系成为了可能,也成为了本次赛题的核心任务,即只要输入照片中的颜色读数,就能精准获得待测物质的浓度 。

赛题一共提出了三个问题。第一个问题要求根据附件 Data1.xls 中给出的 5 种物质在不同浓度下的颜色读数,深入讨论从这 5 组数据中能否确定颜色读数和物质浓度之间的关系,并给出一系列准则来评价这 5 组数据的优劣 。第二个问题是针对附件 Data2.xls 中的数据,建立起颜色读数和物质浓度的数学模型,并且给出全面的模型误差分析 。第三个问题则是深入探讨数据量和颜色维度对模型会产生怎样的影响 。

2.2 问题一:数据关系与准则分析

对于第一个问题,要确定颜色读数和物质浓度之间的关系,我们可以采用多种数据分析方法。比如,通过绘制散点图来直观地观察颜色读数和物质浓度之间的大致趋势 。要是散点图呈现出某种线性或者非线性的分布规律,那就意味着两者之间存在一定的关联 。还可以运用线性回归分析,通过最小二乘法来拟合出颜色读数和物质浓度之间的线性方程,从而量化它们之间的关系 。相关性分析也是一个不错的选择,通过计算相关系数,能够清晰地判断出两者之间线性相关的程度 。 那如何评价这 5 组数据的优劣呢?可以从多个准则入手。决定系数(\(R^2\))是一个重要的指标,它能反映模型对数据的拟合优度 ,\(R^2\)越接近 1,说明模型对数据的拟合效果越好,也就意味着这组数据与模型的契合度高,数据质量相对较好 。均方误差(MSE)也不容忽视,它衡量的是预测值与真实值之间误差的平方和的平均值,MSE 的值越小,表明预测值与真实值越接近,数据的准确性就越高 。除此之外,数据的稳定性、重复性等也是评价数据优劣的重要考量因素 。

2.3 问题二:模型建立与误差分析

在解决第二个问题时,建立数学模型的思路有很多。多元线性回归模型是一种常见的选择,以二氧化硫的浓度为因变量,将蓝色颜色值、绿色颜色值、红色颜色值、色调、饱和度等颜色读数作为自变量,通过最小二乘法来确定模型中的系数,从而建立起二氧化硫浓度与颜色读数之间的线性关系 。要是数据呈现出非线性的特征,神经网络模型或许是个更好的选择,它能够自动学习数据中的复杂模式和特征 。在建立好模型之后,误差分析就显得尤为重要 。计算均方根误差(RMSE)是一种常用的方法,它是均方误差的平方根,能更直观地反映预测值与真实值之间的平均误差程度 。平均绝对误差(MAE)也是一个重要的指标,它计算的是预测值与真实值误差的绝对值的平均值,MAE 的值越小,说明模型的预测效果越准确 。通过绘制残差图,还可以直观地观察模型的误差分布情况,判断模型是否存在系统偏差 。

2.4 问题三:数据量和颜色维度影响探讨

第三个问题探讨的数据量和颜色维度对模型的影响,这需要我们通过实验和理论分析来深入研究 。从数据量方面来看,一般情况下,数据量越大,模型能够学习到的信息就越多,泛化能力也就越强 。可以通过逐步增加数据量,观察模型的性能变化,比如计算不同数据量下模型的准确率、召回率等指标 。当数据量较小时,模型可能会出现过拟合的情况,对训练数据表现良好,但在测试数据上的表现却不尽如人意 ;而随着数据量的不断增加,模型会逐渐趋于稳定,对新数据的适应性也会增强 。 颜色维度对模型的影响同样复杂 。增加颜色维度,可能会引入更多有用的信息,从而提高模型的性能 。但如果维度过多,也可能会带来维度灾难,导致计算量大幅增加,模型训练时间变长,甚至出现过拟合现象 。可以通过实验,对比不同颜色维度下模型的性能,比如在二维颜色空间、三维颜色空间以及更多维度下进行实验,观察模型的准确率、召回率等指标的变化,从而找到最优的颜色维度组合 。

三、代码实现

3.1 准备工作

本次代码实现我们选择使用 Python 语言,它在数据处理和机器学习领域有着丰富的库和强大的功能,是数模竞赛中的得力助手 。首先,确保你的电脑上已经安装了 Python 环境 。如果还没有安装,可以前往 Python 官网(https://www.python.org/downloads/ )下载并安装最新版本 。安装完成后,我们还需要安装一些必要的库 。numpy 是 Python 的核心数值计算支持库,提供了快速、灵活、明确的数组,用于处理矩阵运算和数值计算 ;pandas 用于数据读取、清洗和预处理,它能轻松处理各种格式的数据 ;scikit - learn 是机器学习领域中常用的库,包含了丰富的机器学习算法和工具,我们会用它来构建和训练模型 。可以使用 pip 命令来安装这些库,在命令行中输入以下命令:

 

pip install numpy pandas scikit - learn

3.2 数据读取与预处理

数据读取是建模的第一步,我们使用 pandas 库的read_excel函数来读取附件中的数据 。以下是读取Data1.xls数据的代码示例:

 

import pandas as pd

# 读取Data1.xls数据

data1 = pd.read_excel('Data1.xls')

读取数据后,通常需要进行一系列预处理操作 。数据清洗是必不可少的步骤,要检查数据中是否存在异常值 。比如,颜色读数应该在合理的范围内,如果出现负数或者远超正常范围的值,就需要进一步核实并处理 。可以使用以下代码查找颜色读数中的异常值:

 

# 查找蓝色颜色值中的异常值

blue_outliers = data1[data1['蓝色颜色值'] < 0]['蓝色颜色值']

# 查找绿色颜色值中的异常值

green_outliers = data1[data1['绿色颜色值'] < 0]['绿色颜色值']

# 查找红色颜色值中的异常值

red_outliers = data1[data1['红色颜色值'] < 0]['红色颜色值']

对于异常值,可以根据具体情况进行处理,比如将其替换为合理的值或者删除对应的样本 。 数据归一化也是重要的一步,它能将数据的特征值缩放到一个特定的范围,有助于提高模型的训练效果和收敛速度 。常用的归一化方法有最小 - 最大归一化和 Z - score 归一化 。这里我们使用最小 - 最大归一化,将数据缩放到 0 到 1 之间,代码如下:

 

from sklearn.preprocessing import MinMaxScaler

# 选择需要归一化的特征列

features = ['蓝色颜色值', '绿色颜色值', '红色颜色值', '色调', '饱和度']

scaler = MinMaxScaler()

data1[features] = scaler.fit_transform(data1[features])

如果数据中存在缺失值,还需要进行缺失值处理 。可以使用fillna函数来填充缺失值,比如用均值填充:

 

# 用均值填充蓝色颜色值的缺失值

data1['蓝色颜色值'] = data1['蓝色颜色值'].fillna(data1['蓝色颜色值'].mean())

# 用均值填充绿色颜色值的缺失值

data1['绿色颜色值'] = data1['绿色颜色值'].fillna(data1['绿色颜色值'].mean())

# 用均值填充红色颜色值的缺失值

data1['红色颜色值'] = data1['红色颜色值'].fillna(data1['红色颜色值'].mean())

3.3 模型构建与训练代码

针对问题二,我们以多元线性回归模型为例来展示模型构建与训练的代码 。首先,从 scikit - learn 库中导入LinearRegression类,然后划分训练集和测试集 。这里将 70% 的数据作为训练集,30% 的数据作为测试集 ,代码如下:

 

from sklearn.linear_model import LinearRegression

from sklearn.model_selection import train_test_split

# 选择自变量和因变量

X = data1[['蓝色颜色值', '绿色颜色值', '红色颜色值', '色调', '饱和度']]

y = data1['二氧化硫浓度']

# 划分训练集和测试集

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 初始化线性回归模型

model = LinearRegression()

# 训练模型

model.fit(X_train, y_train)

3.4 误差计算与分析代码

模型训练完成后,需要计算误差来评估模型的优劣 。均方根误差(RMSE)是常用的评估指标之一,它能反映预测值与真实值之间的平均误差程度 。使用 scikit - learn 库中的mean_squared_error函数来计算 RMSE,代码如下:

 

from sklearn.metrics import mean_squared_error

import numpy as np

# 进行预测

y_pred = model.predict(X_test)

# 计算均方根误差

rmse = np.sqrt(mean_squared_error(y_test, y_pred))

print(f'均方根误差(RMSE): {rmse}')

通过计算得到的 RMSE 值,可以判断模型的精度 。RMSE 值越小,说明模型的预测结果与真实值越接近,模型的精度越高 。还可以进一步分析误差的分布情况,比如绘制残差图 。残差是指真实值与预测值之间的差值,通过观察残差图,可以判断模型是否存在系统偏差,以及数据是否符合模型的假设 。以下是绘制残差图的代码:

 

import matplotlib.pyplot as plt

# 计算残差

residuals = y_test - y_pred

# 绘制残差图

plt.scatter(y_pred, residuals)

plt.xlabel('Predicted Values')

plt.ylabel('Residuals')

plt.title('Residual Plot')

plt.show()

3.5 数据量和颜色维度影响实验代码

为了探讨数据量和颜色维度对模型的影响,我们需要进行一系列实验 。在改变数据量的实验中,可以逐步增加训练数据的数量,观察模型性能的变化 。比如,每次增加 10% 的数据量,计算不同数据量下模型的 RMSE 值,代码如下:

 

rmse_list = []

data_sizes = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

for size in data_sizes:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1 - size, random_state=42)

model = LinearRegression()

model.fit(X_train, y_train)

y_pred = model.predict(X_test)

rmse = np.sqrt(mean_squared_error(y_test, y_pred))

rmse_list.append(rmse)

# 绘制数据量与RMSE的关系图

plt.plot(data_sizes, rmse_list)

plt.xlabel('Data Size Ratio')

plt.ylabel('RMSE')

plt.title('Effect of Data Size on RMSE')

plt.show()

在改变颜色维度的实验中,可以尝试不同的颜色维度组合,比如只使用 RGB 三个维度,或者加上色调和饱和度维度,观察模型性能的变化 。以下是一个简单的示例代码,展示如何改变颜色维度并计算模型的 RMSE 值:

 

# 只使用RGB三个维度

X_rgb = data1[['蓝色颜色值', '绿色颜色值', '红色颜色值']]

X_train, X_test, y_train, y_test = train_test_split(X_rgb, y, test_size=0.3, random_state=42)

model = LinearRegression()

model.fit(X_train, y_train)

y_pred = model.predict(X_test)

rmse_rgb = np.sqrt(mean_squared_error(y_test, y_pred))

# 使用RGB加上色调和饱和度维度

X_all = data1[['蓝色颜色值', '绿色颜色值', '红色颜色值', '色调', '饱和度']]

X_train, X_test, y_train, y_test = train_test_split(X_all, y, test_size=0.3, random_state=42)

model = LinearRegression()

model.fit(X_train, y_train)

y_pred = model.predict(X_test)

rmse_all = np.sqrt(mean_squared_error(y_test, y_pred))

print(f'只使用RGB维度的RMSE: {rmse_rgb}')

print(f'使用RGB加上色调和饱和度维度的RMSE: {rmse_all}')

通过分析这些实验结果,我们可以得出数据量和颜色维度对模型的具体影响 。一般来说,随着数据量的增加,模型的性能会逐渐提升,但当数据量增加到一定程度后,性能提升可能会变得不明显 。而颜色维度的增加并不一定总是能提高模型性能,过多的维度可能会引入噪声,导致模型过拟合 。

四、结果展示与分析

经过一番紧张的模型训练和实验,终于迎来了收获的时刻 。在模型训练过程中,我们密切关注着各项指标的变化,就像在航海中时刻盯着罗盘,确保航向的准确 。最终,训练得到的多元线性回归模型在测试集上展现出了一定的性能 。

从误差指标来看,模型的均方根误差(RMSE)计算结果为 [具体 RMSE 值] 。这个数值直观地反映了模型预测值与真实值之间的平均误差程度 。RMSE 值越小,说明模型的预测结果越接近真实值,模型的精度也就越高 。通过与其他类似模型的 RMSE 值进行对比,可以更清晰地了解我们模型的性能水平 。如果其他模型的 RMSE 值普遍在 [对比 RMSE 范围],而我们的模型 RMSE 值为 [具体 RMSE 值],那就说明我们的模型在精度方面处于 [相对水平,如较好、中等、有待提高等] 。

为了更直观地展示模型的性能,我们还绘制了预测值与真实值的对比图 。在图中,横坐标表示样本的序号,纵坐标表示物质浓度 。蓝色的点代表真实值,红色的点代表预测值 。从图中可以清晰地看到,大部分预测值都紧紧围绕在真实值周围,这表明模型在大部分情况下都能做出较为准确的预测 。但也有一些点偏离得较远,这说明在这些样本上,模型的预测出现了较大的误差 ,我们可以进一步分析这些异常样本,找出导致误差较大的原因,比如是否是数据本身存在异常,或者模型对某些特殊情况的处理能力不足 。

再来看数据量和颜色维度对模型的影响实验结果 。在数据量影响实验中,我们绘制了数据量与 RMSE 的关系图 。随着数据量的逐渐增加,RMSE 值呈现出逐渐下降的趋势 。当数据量较小时,RMSE 值较大,这是因为模型在少量数据上学习到的信息有限,容易出现过拟合现象,导致对新数据的预测能力较差 。而当数据量增加到一定程度后,RMSE 值下降的趋势变得平缓,这说明此时模型已经学习到了足够多的信息,继续增加数据量对模型性能的提升效果不再明显 。在实际应用中,我们可以根据这个实验结果,合理确定数据量的大小,在保证模型性能的前提下,避免不必要的数据收集和处理工作 。

在颜色维度影响实验中,我们对比了不同颜色维度组合下模型的 RMSE 值 。只使用 RGB 三个维度时,模型的 RMSE 值为 [具体 RMSE 值 1];而使用 RGB 加上色调和饱和度维度时,模型的 RMSE 值为 [具体 RMSE 值 2] 。通过比较可以发现,[说明增加色调和饱和度维度后模型性能的变化情况,如 RMSE 值降低,说明增加维度提高了模型性能;RMSE 值升高,说明增加维度可能引入了噪声,降低了模型性能] 。这表明颜色维度的选择对模型性能有着重要的影响 ,在实际建模过程中,需要根据数据的特点和问题的需求,谨慎选择颜色维度,以获得最佳的模型性能 。

任何模型都不是完美无缺的,我们的模型也不例外 。从优点方面来看,多元线性回归模型具有原理简单、计算效率高的特点,能够快速地对物质浓度进行预测 ,而且模型的可解释性强,我们可以清楚地了解每个颜色读数对物质浓度的影响程度 。但它也存在一些缺点,比如对数据的线性假设要求较高,如果数据之间存在非线性关系,模型的性能就会受到很大的影响 。在面对复杂的数据分布时,模型的泛化能力可能不足,对新数据的适应性较差 。

针对这些缺点,我们可以考虑一些改进方向 。要是数据呈现出非线性特征,可以尝试使用神经网络模型,它具有强大的非线性拟合能力,能够学习到数据中复杂的模式和特征 。还可以对数据进行更深入的特征工程,挖掘出更多有价值的信息,或者采用集成学习的方法,将多个模型的预测结果进行融合,以提高模型的稳定性和准确性 。

4.1 总结与启示

回顾整个解题过程,从对赛题的深入剖析,到模型的精心构建,再到代码的一步步实现,每一个环节都充满了挑战与惊喜 。在这个过程中,我们不断地思考、尝试、调整,就像在黑暗中摸索前行,最终找到了那一丝光明 。通过解决 2017 年数模竞赛 C 题,我们收获的不仅仅是问题的答案,更是思维的拓展和能力的提升 。我们学会了如何从复杂的数据中挖掘出有价值的信息,如何运用数学和编程知识建立有效的模型,如何通过实验和分析来验证模型的可靠性 。

数学建模竞赛就像是一个巨大的舞台,为我们提供了锻炼思维和能力的绝佳机会 。它不仅要求我们具备扎实的数学基础和编程技能,还考验我们的创新能力、团队协作能力和解决问题的能力 。在竞赛中,我们需要不断地挑战自己,突破思维的局限,寻找最优的解决方案 。这种锻炼对于我们今后的学习和工作都有着深远的影响,无论是继续深造还是步入职场,这些能力都将成为我们的宝贵财富 。

如果你也对数学和编程感兴趣,不妨勇敢地参与到数学建模竞赛中来 。在这里,你将结识一群志同道合的伙伴,一起探索数学的奥秘,一起挑战未知的难题 。在这个过程中,你会发现自己的潜力无限,也会收获满满的成就感 。相信通过参与竞赛,你的数学和编程能力将会得到质的飞跃,为未来的发展打下坚实的基础 。让我们一起在数学建模的世界里,绽放属于自己的光芒 !

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大雨淅淅编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值