


default search action
NeurIPS 2018: Montréal, Canada
- Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, Roman Garnett:

Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada. 2018 - Francis R. Bach:

Efficient Algorithms for Non-convex Isotonic Regression through Submodular Optimization. 1-10 - Jianlong Chang, Jie Gu, Lingfeng Wang, Gaofeng Meng, Shiming Xiang, Chunhong Pan:

Structure-Aware Convolutional Neural Networks. 11-20 - Guangrun Wang, Jiefeng Peng, Ping Luo, Xinjiang Wang, Liang Lin:

Kalman Normalization: Normalizing Internal Representations Across Network Layers. 21-31 - Constantinos Daskalakis, Nishanth Dikkala, Siddhartha Jayanti:

HOGWILD!-Gibbs can be PanAccurate. 32-41 - Seonghyeon Nam, Yunji Kim, Seon Joo Kim:

Text-Adaptive Generative Adversarial Networks: Manipulating Images with Natural Language. 42-51 - Huaibo Huang, Zhihang Li, Ran He, Zhenan Sun, Tieniu Tan:

IntroVAE: Introspective Variational Autoencoders for Photographic Image Synthesis. 52-63 - Jeremias Knoblauch, Jack Jewson, Theodoros Damoulas:

Doubly Robust Bayesian Inference for Non-Stationary Streaming Data with \beta-Divergences. 64-75 - Tyler R. Scott, Karl Ridgeway, Michael C. Mozer:

Adapted Deep Embeddings: A Synthesis of Methods for k-Shot Inductive Transfer Learning. 76-85 - Chaosheng Dong, Yiran Chen, Bo Zeng:

Generalized Inverse Optimization through Online Learning. 86-95 - Ehsan Imani, Eric Graves, Martha White:

An Off-policy Policy Gradient Theorem Using Emphatic Weightings. 96-106 - Lei Le, Andrew Patterson, Martha White:

Supervised autoencoders: Improving generalization performance with unsupervised regularizers. 107-117 - Jun-Yan Zhu, Zhoutong Zhang, Chengkai Zhang, Jiajun Wu, Antonio Torralba, Josh Tenenbaum, Bill Freeman:

Visual Object Networks: Image Generation with Disentangled 3D Representations. 118-129 - Yixi Xu, Xiao Wang:

Understanding Weight Normalized Deep Neural Networks with Rectified Linear Units. 130-139 - Mrinmaya Sachan, Kumar Avinava Dubey, Tom M. Mitchell, Dan Roth, Eric P. Xing:

Learning Pipelines with Limited Data and Domain Knowledge: A Study in Parsing Physics Problems. 140-151 - Drew Linsley, Junkyung Kim, Vijay Veerabadran, Charles Windolf, Thomas Serre:

Learning long-range spatial dependencies with horizontal gated recurrent units. 152-164 - Zhisheng Zhong, Tiancheng Shen, Yibo Yang, Zhouchen Lin, Chao Zhang:

Joint Sub-bands Learning with Clique Structures for Wavelet Domain Super-Resolution. 165-175 - Wenye Li, Jingwei Mao, Yin Zhang, Shuguang Cui:

Fast Similarity Search via Optimal Sparse Lifting. 176-184 - Karl Ridgeway, Michael C. Mozer:

Learning Deep Disentangled Embeddings With the F-Statistic Loss. 185-194 - Mark Rowland, Krzysztof Choromanski, François Chalus, Aldo Pacchiano, Tamás Sarlós, Richard E. Turner, Adrian Weller:

Geometrically Coupled Monte Carlo Sampling. 195-205 - Siyuan Huang, Siyuan Qi, Yinxue Xiao, Yixin Zhu, Ying Nian Wu, Song-Chun Zhu:

Cooperative Holistic Scene Understanding: Unifying 3D Object, Layout, and Camera Pose Estimation. 206-217 - Cong Han Lim:

An Efficient Pruning Algorithm for Robust Isotonic Regression. 218-227 - Daniel Cullina, Arjun Nitin Bhagoji, Prateek Mittal:

PAC-learning in the presence of adversaries. 228-239 - Yiwen Guo, Chao Zhang, Changshui Zhang, Yurong Chen:

Sparse DNNs with Improved Adversarial Robustness. 240-249 - Celestine Dünner, Thomas P. Parnell, Dimitrios Sarigiannis, Nikolas Ioannou, Andreea Anghel, Gummadi Ravi, Madhusudanan Kandasamy, Haralampos Pozidis:

Snap ML: A Hierarchical Framework for Machine Learning. 250-260 - Shice Liu, Yu Hu, Yiming Zeng, Qiankun Tang, Beibei Jin, Yinhe Han, Xiaowei Li:

See and Think: Disentangling Semantic Scene Completion. 261-272 - Chenfei Wu, Jinlai Liu, Xiaojie Wang, Xuan Dong:

Chain of Reasoning for Visual Question Answering. 273-283 - Sekitoshi Kanai, Yasuhiro Fujiwara, Yuki Yamanaka, Shuichi Adachi:

Sigsoftmax: Reanalysis of the Softmax Bottleneck. 284-294 - Wenqi Ren, Jiawei Zhang, Lin Ma, Jinshan Pan, Xiaochun Cao, Wangmeng Zuo, Wei Liu, Ming-Hsuan Yang:

Deep Non-Blind Deconvolution via Generalized Low-Rank Approximation. 295-305 - Tolga Birdal, Umut Simsekli, Mustafa Onur Eken, Slobodan Ilic:

Bayesian Pose Graph Optimization via Bingham Distributions and Tempered Geodesic MCMC. 306-317 - Tong Yang, Xiangyu Zhang, Zeming Li, Wenqiang Zhang, Jian Sun:

MetaAnchor: Learning to Detect Objects with Customized Anchors. 318-328 - Yi Wang, Xin Tao, Xiaojuan Qi, Xiaoyong Shen, Jiaya Jia:

Image Inpainting via Generative Multi-column Convolutional Neural Networks. 329-338 - Guangmo Amo Tong, Ding-Zhu Du, Weili Wu:

On Misinformation Containment in Online Social Networks. 339-349 - Yunpeng Chen, Yannis Kalantidis, Jianshu Li, Shuicheng Yan, Jiashi Feng:

A^2-Nets: Double Attention Networks. 350-359 - Pedro Morgado, Nuno Vasconcelos, Timothy R. Langlois, Oliver Wang:

Self-Supervised Generation of Spatial Audio for 360° Video. 360-370 - Simon S. Du, Yining Wang, Xiyu Zhai, Sivaraman Balakrishnan, Ruslan Salakhutdinov, Aarti Singh:

How Many Samples are Needed to Estimate a Convolutional Neural Network? 371-381 - Simon S. Du, Wei Hu, Jason D. Lee:

Algorithmic Regularization in Learning Deep Homogeneous Models: Layers are Automatically Balanced. 382-393 - Yaron Singer, Avinatan Hassidim:

Optimization for Approximate Submodularity. 394-405 - Haggai Maron, Yaron Lipman:

(Probably) Concave Graph Matching. 406-416 - Ziang Yan, Yiwen Guo, Changshui Zhang:

Deep Defense: Training DNNs with Improved Adversarial Robustness. 417-426 - Junqi Tang, Mohammad Golbabaee, Francis R. Bach, Mike E. Davies:

Rest-Katyusha: Exploiting the Solution's Structure via Scheduled Restart Schemes. 427-438 - Mikhail Figurnov, Shakir Mohamed, Andriy Mnih:

Implicit Reparameterization Gradients. 439-450 - Mario Drumond, Tao Lin, Martin Jaggi, Babak Falsafi:

Training DNNs with Hybrid Block Floating Point. 451-461 - Michael Mitzenmacher:

A Model for Learned Bloom Filters and Optimizing by Sandwiching. 462-471 - Haoye Dong, Xiaodan Liang, Ke Gong, Hanjiang Lai, Jia Zhu, Jian Yin:

Soft-Gated Warping-GAN for Pose-Guided Person Image Synthesis. 472-482 - Minhyuk Sung, Hao Su, Ronald Yu, Leonidas J. Guibas:

Deep Functional Dictionaries: Learning Consistent Semantic Structures on 3D Models from Functions. 483-493 - Yunzhe Tao, Qi Sun, Qiang Du, Wei Liu:

Nonlocal Neural Networks, Nonlocal Diffusion and Nonlocal Modeling. 494-504 - Ohad Shamir:

Are ResNets Provably Better than Linear Predictors? 505-514 - Jun-Ting Hsieh, Bingbin Liu, De-An Huang, Li Fei-Fei, Juan Carlos Niebles:

Learning to Decompose and Disentangle Representations for Video Prediction. 515-524 - Ozan Sener, Vladlen Koltun:

Multi-Task Learning as Multi-Objective Optimization. 525-536 - Zhuwen Li, Qifeng Chen, Vladlen Koltun:

Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search. 537-546 - Qibin Hou, Peng-Tao Jiang, Yunchao Wei, Ming-Ming Cheng:

Self-Erasing Network for Integral Object Attention. 547-557 - Sanghyun Woo, Dahun Kim, Donghyeon Cho, In So Kweon:

LinkNet: Relational Embedding for Scene Graph. 558-568 - Boris Hanin, David Rolnick:

How to Start Training: The Effect of Initialization and Architecture. 569-579 - Boris Hanin:

Which Neural Net Architectures Give Rise to Exploding and Vanishing Gradients? 580-589 - Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Pai-Shun Ting, Karthikeyan Shanmugam

, Payel Das:
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives. 590-601 - Peiqi Wang, Xinfeng Xie, Lei Deng, Guoqi Li, Dongsheng Wang, Yuan Xie:

HitNet: Hybrid Ternary Recurrent Neural Network. 602-612 - Christian Kroer, Tuomas Sandholm:

A Unified Framework for Extensive-Form Game Abstraction with Bounds. 613-624 - Zijun Zhang, Yining Zhang, Zongpeng Li:

Removing the Feature Correlation Effect of Multiplicative Noise. 625-634 - Abhimanyu Dubey, Otkrist Gupta, Ramesh Raskar, Nikhil Naik:

Maximum-Entropy Fine Grained Classification. 635-645 - Yi Hao, Alon Orlitsky, Venkatadheeraj Pichapati:

On Learning Markov Chains. 646-655 - Bo Dai, Sanja Fidler, Dahua Lin:

A Neural Compositional Paradigm for Image Captioning. 656-666 - Kirill Struminsky, Simon Lacoste-Julien, Anton Osokin:

Quantifying Learning Guarantees for Convex but Inconsistent Surrogates. 667-675 - Xiaoxiao Guo, Hui Wu, Yu Cheng, Steven Rennie, Gerald Tesauro, Rogério Schmidt Feris:

Dialog-based Interactive Image Retrieval. 676-686 - Cong Fang, Chris Junchi Li, Zhouchen Lin, Tong Zhang:

SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path-Integrated Differential Estimator. 687-697 - Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, Olivier Bousquet:

Are GANs Created Equal? A Large-Scale Study. 698-707 - Emilien Dupont:

Learning Disentangled Joint Continuous and Discrete Representations. 708-718 - Boris N. Oreshkin, Pau Rodríguez López, Alexandre Lacoste:

TADAM: Task dependent adaptive metric for improved few-shot learning. 719-729 - Moran Feldman, Amin Karbasi, Ehsan Kazemi:

Do Less, Get More: Streaming Submodular Maximization with Subsampling. 730-740 - Rui Li, Kishan KC, Feng Cui, Justin Domke, Anne R. Haake:

Sparse Covariance Modeling in High Dimensions with Gaussian Processes. 741-750 - Bao Wang, Xiyang Luo, Zhen Li, Wei Zhu, Zuoqiang Shi, Stanley J. Osher:

Deep Neural Nets with Interpolating Function as Output Activation. 751-761 - Shuyang Sun, Jiangmiao Pang, Jianping Shi, Shuai Yi, Wanli Ouyang:

FishNet: A Versatile Backbone for Image, Region, and Pixel Level Prediction. 762-772 - Ashish Kumar, Saurabh Gupta, David F. Fouhey, Sergey Levine, Jitendra Malik:

Visual Memory for Robust Path Following. 773-782 - Xiaojie Wang, Rui Zhang, Yu Sun, Jianzhong Qi:

KDGAN: Knowledge Distillation with Generative Adversarial Networks. 783-794 - Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, Wolfgang Maass:

Long short-term memory and Learning-to-learn in networks of spiking neurons. 795-805 - Shupeng Su, Chao Zhang, Kai Han, Yonghong Tian:

Greedy Hash: Towards Fast Optimization for Accurate Hash Coding in CNN. 806-815 - Wittawat Jitkrittum, Heishiro Kanagawa, Patsorn Sangkloy, James Hays, Bernhard Schölkopf, Arthur Gretton:

Informative Features for Model Comparison. 816-827 - Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, Baoquan Chen:

PointCNN: Convolution On X-Transformed Points. 828-838 - Hu Liu, Sheng Jin, Changshui Zhang:

Connectionist Temporal Classification with Maximum Entropy Regularization. 839-849 - Gamaleldin F. Elsayed, Dilip Krishnan, Hossein Mobahi, Kevin Regan, Samy Bengio:

Large Margin Deep Networks for Classification. 850-860 - Tianshu Yu, Junchi Yan, Yilin Wang, Wei Liu, Baoxin Li:

Generalizing Graph Matching beyond Quadratic Assignment Model. 861-871 - Christian Kroer, Gabriele Farina, Tuomas Sandholm:

Solving Large Sequential Games with the Excessive Gap Technique. 872-882 - Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu, Junzhou Huang, Jin-Hui Zhu:

Discrimination-aware Channel Pruning for Deep Neural Networks. 883-894 - Zi Yin, Yuanyuan Shen:

On the Dimensionality of Word Embedding. 895-906 - Ju Xu, Zhanxing Zhu:

Reinforced Continual Learning. 907-916 - Jay Heo, Haebeom Lee, Saehoon Kim, Juho Lee, Kwang Joon Kim, Eunho Yang, Sung Ju Hwang:

Uncertainty-Aware Attention for Reliable Interpretation and Prediction. 917-926 - Haebeom Lee, Juho Lee, Saehoon Kim, Eunho Yang, Sung Ju Hwang:

DropMax: Adaptive Variational Softmax. 927-937 - Veronika Rocková, Nicholas Polson:

Posterior Concentration for Sparse Deep Learning. 938-949 - Guilhem Chéron, Jean-Baptiste Alayrac, Ivan Laptev, Cordelia Schmid:

A flexible model for training action localization with varying levels of supervision. 950-961 - Yan Zheng, Zhaopeng Meng, Jianye Hao, Zongzhang Zhang, Tianpei Yang, Changjie Fan:

A Deep Bayesian Policy Reuse Approach Against Non-Stationary Agents. 962-972 - Di Wang, Marco Gaboardi

, Jinhui Xu:
Empirical Risk Minimization in Non-interactive Local Differential Privacy Revisited. 973-982 - Hang Gao, Zheng Shou, Alireza Zareian, Hanwang Zhang, Shih-Fu Chang:

Low-shot Learning via Covariance-Preserving Adversarial Augmentation Networks. 983-993 - Michel Deudon:

Learning semantic similarity in a continuous space. 994-1005 - Yogesh Balaji, Swami Sankaranarayanan, Rama Chellappa:

MetaReg: Towards Domain Generalization using Meta-Regularization. 1006-1016 - Lifang He, Kun Chen, Wanwan Xu, Jiayu Zhou, Fei Wang:

Boosted Sparse and Low-Rank Tensor Regression. 1017-1026 - An Zhao, Mingyu Ding, Jiechao Guan, Zhiwu Lu, Tao Xiang, Ji-Rong Wen:

Domain-Invariant Projection Learning for Zero-Shot Recognition. 1027-1038 - Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, Josh Tenenbaum:

Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding. 1039-1050 - Zhenhua Liu, Jizheng Xu, Xiulian Peng, Ruiqin Xiong:

Frequency-Domain Dynamic Pruning for Convolutional Neural Networks. 1051-1061 - Pan Li, Niao He, Olgica Milenkovic:

Quadratic Decomposable Submodular Function Minimization. 1062-1072 - Tengyang Xie, Bo Liu, Yangyang Xu, Mohammad Ghavamzadeh, Yinlam Chow, Daoming Lyu

, Daesub Yoon:
A Block Coordinate Ascent Algorithm for Mean-Variance Optimization. 1073-1083 - Lijun Zhang, Zhi-Hua Zhou:

\ell_1-regression with Heavy-tailed Distributions. 1084-1094 - Tobias Plötz, Stefan Roth:

Neural Nearest Neighbors Networks. 1095-1106 - Shali Jiang, Gustavo Malkomes, Matthew Abbott, Benjamin Moseley, Roman Garnett:

Efficient nonmyopic batch active search. 1107-1117 - Omer Ben-Porat, Moshe Tennenholtz:

A Game-Theoretic Approach to Recommendation Systems with Strategic Content Providers. 1118-1128 - Christopher Tosh, Sanjoy Dasgupta:

Interactive Structure Learning with Structural Query-by-Committee. 1129-1139 - Yanjun Li, Yoram Bresler:

Global Geometry of Multichannel Sparse Blind Deconvolution on the Sphere. 1140-1151 - Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Nikolai Yakovenko, Andrew Tao, Jan Kautz, Bryan Catanzaro:

Video-to-Video Synthesis. 1152-1164 - Zeyuan Allen-Zhu:

How To Make the Gradients Small Stochastically: Even Faster Convex and Nonconvex SGD. 1165-1175 - Hexiang Hu, Liyu Chen, Boqing Gong, Fei Sha:

Synthesize Policies for Transfer and Adaptation across Tasks and Environments. 1176-1185 - Alhussein Fawzi, Hamza Fawzi, Omar Fawzi:

Adversarial vulnerability for any classifier. 1186-1195 - Shauharda Khadka, Kagan Tumer:

Evolution-Guided Policy Gradient in Reinforcement Learning. 1196-1208 - Sven Bambach, David J. Crandall, Linda B. Smith, Chen Yu:

Toddler-Inspired Visual Object Learning. 1209-1218 - Miguel Á. Carreira-Perpiñán, Pooya Tavallali:

Alternating optimization of decision trees, with application to learning sparse oblique trees. 1219-1229 - Yixiao Ge, Zhuowan Li, Haiyu Zhao, Guojun Yin, Shuai Yi, Xiaogang Wang, Hongsheng Li:

FD-GAN: Pose-guided Feature Distilling GAN for Robust Person Re-identification. 1230-1241 - Pan Zhou, Xiaotong Yuan, Jiashi Feng:

New Insight into Hybrid Stochastic Gradient Descent: Beyond With-Replacement Sampling and Convexity. 1242-1251 - Zeyuan Allen-Zhu, David Simchi-Levi, Xinshang Wang:

The Lingering of Gradients: How to Reuse Gradients Over Time. 1252-1261 - Junnan Li, Yongkang Wong, Qi Zhao, Mohan S. Kankanhalli:

Unsupervised Learning of View-invariant Action Representations. 1262-1272 - Hoda Heidari, Claudio Ferrari, Krishna P. Gummadi

, Andreas Krause:
Fairness Behind a Veil of Ignorance: A Welfare Analysis for Automated Decision Making. 1273-1283 - Qilong Wang, Zilin Gao, Jiangtao Xie, Wangmeng Zuo, Peihua Li:

Global Gated Mixture of Second-order Pooling for Improving Deep Convolutional Neural Networks. 1284-1293 - Abel Gonzalez-Garcia, Joost van de Weijer, Yoshua Bengio:

Image-to-image translation for cross-domain disentanglement. 1294-1305 - Jianqiao Wangni, Jialei Wang, Ji Liu, Tong Zhang:

Gradient Sparsification for Communication-Efficient Distributed Optimization. 1306-1316 - Taylor Mordan, Nicolas Thome, Gilles Hénaff, Matthieu Cord:

Revisiting Multi-Task Learning with ROCK: a Deep Residual Auxiliary Block for Visual Detection. 1317-1329 - Lijun Zhang, Shiyin Lu, Zhi-Hua Zhou:

Adaptive Online Learning in Dynamic Environments. 1330-1340 - ChengYue Gong, Di He, Xu Tan, Tao Qin, Liwei Wang, Tie-Yan Liu:

FRAGE: Frequency-Agnostic Word Representation. 1341-1352 - Harshil Shah, David Barber:

Generative Neural Machine Translation. 1353-1362 - Austin R. Benson, Jon M. Kleinberg:

Found Graph Data and Planted Vertex Covers. 1363-1374 - Hajin Shim, Sung Ju Hwang, Eunho Yang:

Joint Active Feature Acquisition and Classification with Variable-Size Set Encoding. 1375-1385 - Ira Shavitt, Eran Segal:

Regularization Learning Networks: Deep Learning for Tabular Datasets. 1386-1396 - Alexis Bellot, Mihaela van der Schaar:

Multitask Boosting for Survival Analysis with Competing Risks. 1397-1406 - Ofir Lindenbaum, Jay S. Stanley III, Guy Wolf, Smita Krishnaswamy:

Geometry Based Data Generation. 1407-1418 - Sumit Bam Shrestha, Garrick Orchard:

SLAYER: Spike Layer Error Reassignment in Time. 1419-1428 - Christoph Dann, Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, Robert E. Schapire:

On Oracle-Efficient PAC RL with Rich Observations. 1429-1439 - Dongsung Huh, Terrence J. Sejnowski:

Gradient Descent for Spiking Neural Networks. 1440-1450 - Cheng Zhang, Frederick A. Matsen IV:

Generalizing Tree Probability Estimation via Bayesian Networks. 1451-1460 - Siddharth Reddy, Anca D. Dragan, Sergey Levine:

Where Do You Think You're Going?: Inferring Beliefs about Dynamics from Behavior. 1461-1472 - Longquan Dai, Liang Tang, Yuan Xie, Jinhui Tang:

Designing by Training: Acceleration Neural Network for Fast High-Dimensional Convolution. 1473-1482 - Yuxin Chen, Adish Singla

, Oisin Mac Aodha, Pietro Perona, Yisong Yue:
Understanding the Role of Adaptivity in Machine Teaching: The Case of Version Space Learners. 1483-1493 - A loss framework for calibrated anomaly detection. 1494-1504

- Zinan Lin, Ashish Khetan, Giulia Fanti, Sewoong Oh:

PacGAN: The power of two samples in generative adversarial networks. 1505-1514 - Hung Le, Truyen Tran, Thin Nguyen, Svetha Venkatesh

:
Variational Memory Encoder-Decoder. 1515-1525 - Yunwen Lei, Ke Tang:

Stochastic Composite Mirror Descent: Optimal Bounds with High Probabilities. 1526-1536 - Yuan Li, Xiaodan Liang, Zhiting Hu, Eric P. Xing:

Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation. 1537-1547 - Sainandan Ramakrishnan, Aishwarya Agrawal, Stefan Lee:

Overcoming Language Priors in Visual Question Answering with Adversarial Regularization. 1548-1558 - Chenhan Jiang, Hang Xu, Xiaodan Liang, Liang Lin:

Hybrid Knowledge Routed Modules for Large-scale Object Detection. 1559-1570 - Jin-Hwa Kim, Jaehyun Jun, Byoung-Tak Zhang:

Bilinear Attention Networks. 1571-1581 - Xing Yan, Weizhong Zhang, Lin Ma, Wei Liu, Qi Wu:

Parsimonious Quantile Regression of Financial Asset Tail Dynamics via Sequential Learning. 1582-1592 - Jian Li, Yong Liu, Rong Yin, Hua Zhang, Lizhong Ding, Weiping Wang:

Multi-Class Learning: From Theory to Algorithm. 1593-1602 - Yonghong Luo, Xiangrui Cai, Ying Zhang, Jun Xu, Xiaojie Yuan:

Multivariate Time Series Imputation with Generative Adversarial Networks. 1603-1614 - Yunhe Wang, Chang Xu, Chunjing Xu, Chao Xu, Dacheng Tao:

Learning Versatile Filters for Efficient Convolutional Neural Networks. 1615-1625 - Robert M. Gower, Filip Hanzely, Peter Richtárik, Sebastian U. Stich:

Accelerated Stochastic Matrix Inversion: General Theory and Speeding up BFGS Rules for Faster Second-Order Optimization. 1626-1636 - Peng Jiang, Fanglin Gu, Yunhai Wang, Changhe Tu, Baoquan Chen:

DifNet: Semantic Segmentation by Diffusion Networks. 1637-1646 - Mingsheng Long

, Zhangjie Cao, Jianmin Wang
, Michael I. Jordan:
Conditional Adversarial Domain Adaptation. 1647-1657 - Ignacio Rocco, Mircea Cimpoi, Relja Arandjelovic, Akihiko Torii, Tomás Pajdla, Josef Sivic:

Neighbourhood Consensus Networks. 1658-1669 - Edouard Pauwels, Francis R. Bach, Jean-Philippe Vert:

Relating Leverage Scores and Density using Regularized Christoffel Functions. 1670-1679 - Ding Liu, Bihan Wen, Yuchen Fan, Chen Change Loy, Thomas S. Huang:

Non-Local Recurrent Network for Image Restoration. 1680-1689 - Yin Cheng Ng, Nicolò Colombo, Ricardo Silva:

Bayesian Semi-supervised Learning with Graph Gaussian Processes. 1690-1701 - Abhishek Sharma:

Foreground Clustering for Joint Segmentation and Localization in Videos and Images. 1702-1711 - Jingwei Xu, Bingbing Ni, Xiaokang Yang:

Video Prediction via Selective Sampling. 1712-1722 - Hongteng Xu, Wenlin Wang, Wei Liu, Lawrence Carin:

Distilled Wasserstein Learning for Word Embedding and Topic Modeling. 1723-1732 - Yilun Du, Zhijian Liu, Hector Basevi, Ales Leonardis, Bill Freeman, Josh Tenenbaum, Jiajun Wu:

Learning to Exploit Stability for 3D Scene Parsing. 1733-1743 - Lisa Zhang, Gregory Rosenblatt, Ethan Fetaya, Renjie Liao, William E. Byrd, Matthew Might, Raquel Urtasun, Richard S. Zemel:

Neural Guided Constraint Logic Programming for Program Synthesis. 1744-1753 - Simyung Chang, John Yang, Jaeseok Choi, Nojun Kwak:

Genetic-Gated Networks for Deep Reinforcement Learning. 1754-1763 - Romain Warlop, Alessandro Lazaric, Jérémie Mary:

Fighting Boredom in Recommender Systems with Linear Reinforcement Learning. 1764-1773 - Isabel Valera

, Adish Singla
, Manuel Gomez Rodriguez:
Enhancing the Accuracy and Fairness of Human Decision Making. 1774-1783 - Pierre Thodoroff, Audrey Durand, Joelle Pineau, Doina Precup:

Temporal Regularization for Markov Decision Process. 1784-1794 - Jesse H. Krijthe, Marco Loog:

The Pessimistic Limits and Possibilities of Margin-based Losses in Semi-supervised Learning. 1795-1804 - Horia Mania, Aurelia Guy, Benjamin Recht:

Simple random search of static linear policies is competitive for reinforcement learning. 1805-1814 - Yizhe Zhang, Michel Galley, Jianfeng Gao, Zhe Gan, Xiujun Li, Chris Brockett

, Bill Dolan:
Generating Informative and Diverse Conversational Responses via Adversarial Information Maximization. 1815-1825 - Marylou Gabrié, Andre Manoel, Clément Luneau, Jean Barbier, Nicolas Macris, Florent Krzakala

, Lenka Zdeborová:
Entropy and mutual information in models of deep neural networks. 1826-1836 - Guocong Song, Wei Chai:

Collaborative Learning for Deep Neural Networks. 1837-1846 - Ilias Zadik, David Gamarnik:

High Dimensional Linear Regression using Lattice Basis Reduction. 1847-1857 - Xiaodan Liang, Zhiting Hu, Hao Zhang, Liang Lin, Eric P. Xing:

Symbolic Graph Reasoning Meets Convolutions. 1858-1868 - Arash Vahdat, Evgeny Andriyash, William G. Macready:

DVAE#: Discrete Variational Autoencoders with Relaxed Boltzmann Priors. 1869-1878 - Peter Anderson, Stephen Gould, Mark Johnson:

Partially-Supervised Image Captioning. 1879-1890 - Shunyu Yao, Tzu-Ming Harry Hsu, Jun-Yan Zhu, Jiajun Wu, Antonio Torralba, Bill Freeman, Josh Tenenbaum:

3D-Aware Scene Manipulation via Inverse Graphics. 1891-1902 - Jonathan H. Huggins, Lester Mackey:

Random Feature Stein Discrepancies. 1903-1913 - Ashok Cutkosky

, Róbert Busa-Fekete:
Distributed Stochastic Optimization via Adaptive SGD. 1914-1923 - Nesime Tatbul, Tae Jun Lee, Stan Zdonik, Mejbah Alam, Justin Gottschlich:

Precision and Recall for Time Series. 1924-1934 - Shi Pu, Yibing Song, Chao Ma, Honggang Zhang, Ming-Hsuan Yang:

Deep Attentive Tracking via Reciprocative Learning. 1935-1945 - Binghui Chen, Weihong Deng, Haifeng Shen:

Virtual Class Enhanced Discriminative Embedding Learning. 1946-1956 - Liang Zhang, Guangming Zhu, Lin Mei, Peiyi Shen, Syed Afaq Ali Shah, Mohammed Bennamoun:

Attention in Convolutional LSTM for Gesture Recognition. 1957-1966 - Robert J. Wang, Xiang Li, Charles X. Ling:

Pelee: A Real-Time Object Detection System on Mobile Devices. 1967-1976 - Simina Brânzei, Ruta Mehta, Noam Nisan:

Universal Growth in Production Economies. 1975 - Fei Jiang, Guosheng Yin, Francesca Dominici:

Bayesian Model Selection Approach to Boundary Detection with Non-Local Priors. 1978-1987 - Pan Zhou, Xiaotong Yuan, Jiashi Feng:

Efficient Stochastic Gradient Hard Thresholding. 1988-1997 - Cem Keskin, Shahram Izadi:

SplineNets: Continuous Neural Decision Graphs. 1998-2008 - Shichen Liu, Mingsheng Long

, Jianmin Wang
, Michael I. Jordan:
Generalized Zero-Shot Learning with Deep Calibration Network. 2009-2019 - Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabás Póczos, Eric P. Xing:

Neural Architecture Search with Bayesian Optimisation and Optimal Transport. 2020-2029 - William L. Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, Jure Leskovec:

Embedding Logical Queries on Knowledge Graphs. 2030-2041 - Jinyan Liu, Zhiyi Huang, Xiangning Wang:

Learning Optimal Reserve Price against Non-myopic Bidders. 2042-2052 - Lu Qi, Shu Liu, Jianping Shi, Jiaya Jia:

Sequential Context Encoding for Duplicate Removal. 2053-2062 - Supasorn Suwajanakorn, Noah Snavely, Jonathan Tompson, Mohammad Norouzi:

Discovery of Latent 3D Keypoints via End-to-end Geometric Reasoning. 2063-2074 - Simon Lyddon, Stephen Walker, Chris C. Holmes:

Nonparametric learning from Bayesian models with randomized objective functions. 2075-2085 - Filip Hanzely, Konstantin Mishchenko, Peter Richtárik:

SEGA: Variance Reduction via Gradient Sketching. 2086-2097 - Amit Zohar, Lior Wolf:

Automatic Program Synthesis of Long Programs with a Learned Garbage Collector. 2098-2107 - Sagie Benaim, Lior Wolf:

One-Shot Unsupervised Cross Domain Translation. 2108-2118 - Etai Littwin, Lior Wolf:

Regularizing by the Variance of the Activations' Sample-Variances. 2119-2129 - Xueyu Mao, Purnamrita Sarkar, Deepayan Chakrabarti:

Overlapping Clustering Models, and One (class) SVM to Bind Them All. 2130-2140 - Markus Lange-Hegermann:

Algorithmic Linearly Constrained Gaussian Processes. 2141-2152 - Runsheng Yu, Wenyu Liu, Yasen Zhang, Zhi Qu, Deli Zhao, Bo Zhang:

DeepExposure: Learning to Expose Photos with Asynchronously Reinforced Adversarial Learning. 2153-2163 - Elad Hoffer, Ron Banner, Itay Golan, Daniel Soudry:

Norm matters: efficient and accurate normalization schemes in deep networks. 2164-2174 - Zhihui Zhu, Yifan Wang, Daniel P. Robinson, Daniel Q. Naiman, René Vidal, Manolis C. Tsakiris:

Dual Principal Component Pursuit: Improved Analysis and Efficient Algorithms. 2175-2185 - Helena Peic Tukuljac, Antoine Deleforge, Rémi Gribonval:

MULAN: A Blind and Off-Grid Method for Multichannel Echo Retrieval. 2186-2196 - Daniel L. Pimentel-Alarcón:

Mixture Matrix Completion. 2197-2207 - Yue Zhao, Yuanjun Xiong, Dahua Lin:

Trajectory Convolution for Action Recognition. 2208-2219 - Léonard Blier, Yann Ollivier:

The Description Length of Deep Learning models. 2220-2230 - Sampath Kannan, Jamie Morgenstern, Aaron Roth, Bo Waggoner, Zhiwei Steven Wu

:
A Smoothed Analysis of the Greedy Algorithm for the Linear Contextual Bandit Problem. 2231-2241 - Pan Li, Olgica Milenkovic:

Revisiting Decomposable Submodular Function Minimization with Incidence Relations. 2242-2252 - Jiecao Chen, Erfan Sadeqi Azer, Qin Zhang

:
A Practical Algorithm for Distributed Clustering and Outlier Detection. 2253-2262 - Xiuming Zhang, Zhoutong Zhang, Chengkai Zhang, Josh Tenenbaum, Bill Freeman, Jiajun Wu:

Learning to Reconstruct Shapes from Unseen Classes. 2263-2274 - Chang Xiao, Peilin Zhong, Changxi Zheng:

BourGAN: Generative Networks with Metric Embeddings. 2275-2286 - Thomas Pumir, Samy Jelassi, Nicolas Boumal:

Smoothed analysis of the low-rank approach for smooth semidefinite programs. 2287-2296 - Ofir Marom, Benjamin Rosman:

Zero-Shot Transfer with Deictic Object-Oriented Representation in Reinforcement Learning. 2297-2305 - Mikhail Belkin, Daniel J. Hsu, Partha Mitra:

Overfitting or perfect fitting? Risk bounds for classification and regression rules that interpolate. 2306-2317 - Robert Hannah, Yanli Liu, Daniel O'Connor, Wotao Yin:

Breaking the Span Assumption Yields Fast Finite-Sum Minimization. 2318-2327 - Yuqian Zhang, Han-Wen Kuo, John Wright:

Structured Local Minima in Sparse Blind Deconvolution. 2328-2337 - Shusen Wang, Farbod Roosta-Khorasani, Peng Xu, Michael W. Mahoney:

GIANT: Globally Improved Approximate Newton Method for Distributed Optimization. 2338-2348 - Xenia Miscouridou, Francois Caron, Yee Whye Teh:

Modelling sparsity, heterogeneity, reciprocity and community structure in temporal interaction data. 2349-2358 - Eric Balkanski, Adam Breuer, Yaron Singer:

Non-monotone Submodular Maximization in Exponentially Fewer Iterations. 2359-2370 - Ruixiang Zhang, Tong Che, Zoubin Ghahramani, Yoshua Bengio, Yangqiu Song:

MetaGAN: An Adversarial Approach to Few-Shot Learning. 2371-2380 - Matthew Joseph, Aaron Roth, Jonathan R. Ullman, Bo Waggoner:

Local Differential Privacy for Evolving Data. 2381-2390 - Vincent Dutordoir, Hugh Salimbeni, James Hensman, Marc Peter Deisenroth:

Gaussian Process Conditional Density Estimation. 2391-2401 - Zhongwen Xu, Hado van Hasselt, David Silver:

Meta-Gradient Reinforcement Learning. 2402-2413 - Louis Kirsch, Julius Kunze, David Barber:

Modular Networks: Learning to Decompose Neural Computation. 2414-2423 - Piotr Mirowski, Matthew Koichi Grimes, Mateusz Malinowski, Karl Moritz Hermann, Keith Anderson, Denis Teplyashin, Karen Simonyan, Koray Kavukcuoglu, Andrew Zisserman, Raia Hadsell:

Learning to Navigate in Cities Without a Map. 2424-2435 - Kuang Xu:

Query Complexity of Bayesian Private Learning. 2436-2445 - Cédric Josz, Yi Ouyang, Richard Y. Zhang, Javad Lavaei, Somayeh Sojoudi:

A theory on the absence of spurious solutions for nonconvex and nonsmooth optimization. 2446-2454 - David Ha, Jürgen Schmidhuber:

Recurrent World Models Facilitate Policy Evolution. 2455-2467 - Shannon R. McCurdy:

Ridge Regression and Provable Deterministic Ridge Leverage Score Sampling. 2468-2477 - Luca Ambrogioni, Umut Güçlü, Yagmur Güçlütürk, Max Hinne, Marcel A. J. van Gerven, Eric Maris:

Wasserstein Variational Inference. 2478-2487 - Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, Aleksander Madry:

How Does Batch Normalization Help Optimization? 2488-2498 - Osbert Bastani, Yewen Pu, Armando Solar-Lezama

:
Verifiable Reinforcement Learning via Policy Extraction. 2499-2509 - Michal Derezinski, Manfred K. Warmuth, Daniel J. Hsu:

Leveraged volume sampling for linear regression. 2510-2519 - Gregory Plumb, Denali Molitor, Ameet Talwalkar:

Model Agnostic Supervised Local Explanations. 2520-2529 - Peng Jiang, Gagan Agrawal:

A Linear Speedup Analysis of Distributed Deep Learning with Sparse and Quantized Communication. 2530-2541 - Jack Goetz, Ambuj Tewari, Paul M. Zimmerman:

Active Learning for Non-Parametric Regression Using Purely Random Trees. 2542-2551 - Xinyun Chen, Chang Liu, Dawn Song:

Tree-to-tree Neural Networks for Program Translation. 2552-2562 - Hyeonseob Nam, Hyo-Eun Kim:

Batch-Instance Normalization for Adaptively Style-Invariant Neural Networks. 2563-2572 - Sanghack Lee, Elias Bareinboim:

Structural Causal Bandits: Where to Intervene? 2573-2583 - Sang-Woo Lee, Yu-Jung Heo, Byoung-Tak Zhang:

Answerer in Questioner's Mind: Information Theoretic Approach to Goal-Oriented Visual Dialog. 2584-2594 - Alexander H. Liu, Yen-Cheng Liu, Yu-Ying Yeh, Yu-Chiang Frank Wang:

A Unified Feature Disentangler for Multi-Domain Image Translation and Manipulation. 2595-2604 - Stephen Gillen, Christopher Jung, Michael J. Kearns, Aaron Roth:

Online Learning with an Unknown Fairness Metric. 2605-2614 - Tian Qi Chen, Xuechen Li, Roger B. Grosse, David Duvenaud:

Isolating Sources of Disentanglement in Variational Autoencoders. 2615-2625 - Dylan J. Foster, Akshay Krishnamurthy:

Contextual bandits with surrogate losses: Margin bounds and efficient algorithms. 2626-2637 - Liuyi Yao, Sheng Li, Yaliang Li, Mengdi Huai, Jing Gao, Aidong Zhang:

Representation Learning for Treatment Effect Estimation from Observational Data. 2638-2648 - Yao Liu, Omer Gottesman, Aniruddh Raghu, Matthieu Komorowski, Aldo A. Faisal, Finale Doshi-Velez, Emma Brunskill:

Representation Balancing MDPs for Off-policy Policy Evaluation. 2649-2658 - Medhini Narasimhan, Svetlana Lazebnik, Alexander G. Schwing:

Out of the Box: Reasoning with Graph Convolution Nets for Factual Visual Question Answering. 2659-2670 - Ruichu Cai, Jie Qiao, Kun Zhang, Zhenjie Zhang, Zhifeng Hao:

Causal Discovery from Discrete Data using Hidden Compact Representation. 2671-2679 - Zeyuan Allen-Zhu:

Natasha 2: Faster Non-Convex Optimization Than SGD. 2680-2691 - Jaeho Lee, Maxim Raginsky:

Minimax Statistical Learning with Wasserstein distances. 2692-2701 - Josip Djolonga, Stefanie Jegelka, Andreas Krause:

Provable Variational Inference for Constrained Log-Submodular Models. 2702-2712 - Seunghoon Hong, Xinchen Yan, Thomas E. Huang, Honglak Lee:

Learning Hierarchical Semantic Image Manipulation through Structured Representations. 2713-2723 - Marek Smieja, Lukasz Struski, Jacek Tabor, Bartosz Zielinski, Przemyslaw Spurek:

Processing of missing data by neural networks. 2724-2734 - Christoph Zimmer, Mona Meister, Duy Nguyen-Tuong:

Safe Active Learning for Time-Series Modeling with Gaussian Processes. 2735-2744 - Kevin Scaman, Francis R. Bach, Sébastien Bubeck, Laurent Massoulié, Yin Tat Lee:

Optimal Algorithms for Non-Smooth Distributed Optimization in Networks. 2745-2754 - Sören Laue, Matthias Mitterreiter, Joachim Giesen:

Computing Higher Order Derivatives of Matrix and Tensor Expressions. 2755-2764 - Jangho Kim, Seonguk Park, Nojun Kwak:

Paraphrasing Complex Network: Network Compression via Factor Transfer. 2765-2774 - Tom Michoel:

Analytic solution and stationary phase approximation for the Bayesian lasso and elastic net. 2775-2785 - Chaitanya Ryali, Gautam Reddy, Angela J. Yu:

Demystifying excessively volatile human learning: A Bayesian persistent prior and a neural approximation. 2786-2795 - Michele Donini, Luca Oneto, Shai Ben-David, John Shawe-Taylor, Massimiliano Pontil:

Empirical Risk Minimization Under Fairness Constraints. 2796-2806 - Eldar Insafutdinov, Alexey Dosovitskiy:

Unsupervised Learning of Shape and Pose with Differentiable Point Clouds. 2807-2817 - Motoya Ohnishi, Masahiro Yukawa, Mikael Johansson, Masashi Sugiyama:

Continuous-time Value Function Approximation in Reproducing Kernel Hilbert Spaces. 2818-2829 - Zhiqiang Xu:

Gradient Descent Meets Shift-and-Invert Preconditioning for Eigenvector Computation. 2830-2839 - Julian Zimmert, Yevgeny Seldin:

Factored Bandits. 2840-2849 - Eli Schwartz, Leonid Karlinsky, Joseph Shtok, Sivan Harary, Mattias Marder, Abhishek Kumar, Rogério Schmidt Feris, Raja Giryes, Alexander M. Bronstein:

Delta-encoder: an effective sample synthesis method for few-shot object recognition. 2850-2860 - Isao Ishikawa, Keisuke Fujii, Masahiro Ikeda, Yuka Hashimoto, Yoshinobu Kawahara:

Metric on Nonlinear Dynamical Systems with Perron-Frobenius Operators. 2861-2871 - Jie Cao, Yibo Hu, Hongwen Zhang, Ran He, Zhenan Sun:

Learning a High Fidelity Pose Invariant Model for High-resolution Face Frontalization. 2872-2882 - Ya-Ping Hsieh, Ali Kavis, Paul Rolland, Volkan Cevher

:
Mirrored Langevin Dynamics. 2883-2892 - Elliot J. Crowley, Gavin Gray, Amos J. Storkey:

Moonshine: Distilling with Cheap Convolutions. 2893-2903 - Nilesh Tripuraneni, Mitchell Stern, Chi Jin, Jeffrey Regier, Michael I. Jordan:

Stochastic Cubic Regularization for Fast Nonconvex Optimization. 2904-2913 - Tobias Sommer Thune, Yevgeny Seldin:

Adaptation to Easy Data in Prediction with Limited Advice. 2914-2923 - Garrett Bernstein, Daniel Sheldon:

Differentially Private Bayesian Inference for Exponential Families. 2924-2934 - Yusuf Aytar, Tobias Pfaff, David Budden, Tom Le Paine, Ziyu Wang, Nando de Freitas:

Playing hard exploration games by watching YouTube. 2935-2945 - Daya Guo, Duyu Tang, Nan Duan, Ming Zhou, Jian Yin:

Dialog-to-Action: Conversational Question Answering Over a Large-Scale Knowledge Base. 2946-2955 - Xiao Yan, Jinfeng Li, Xinyan Dai, Hongzhi Chen, James Cheng:

Norm-Ranging LSH for Maximum Inner Product Search. 2956-2965 - Dimitris Bertsimas, Christopher McCord:

Optimization over Continuous and Multi-dimensional Decisions with Observational Data. 2966-2974 - Flavio Figueiredo, Guilherme Resende Borges, Pedro O. S. Vaz de Melo, Renato M. Assunção:

Fast Estimation of Causal Interactions using Wold Processes. 2975-2986 - Cheng Tang, Damien Garreau, Ulrike von Luxburg:

When do random forests fail? 2987-2997 - Ronan Fruit, Matteo Pirotta, Alessandro Lazaric:

Near Optimal Exploration-Exploitation in Non-Communicating Markov Decision Processes. 2998-3008 - Jean-Bastien Grill, Michal Valko, Rémi Munos:

Optimistic optimization of a Brownian. 3009-3018 - Debarghya Ghoshdastidar, Ulrike von Luxburg:

Practical Methods for Graph Two-Sample Testing. 3019-3028 - Marco Ciccone, Marco Gallieri, Jonathan Masci, Christian Osendorfer, Faustino J. Gomez:

NAIS-Net: Stable Deep Networks from Non-Autonomous Differential Equations. 3029-3039 - Lénaïc Chizat, Francis R. Bach:

On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport. 3040-3050 - Raanan Y. Rohekar, Shami Nisimov, Yaniv Gurwicz, Guy Koren, Gal Novik:

Constructing Deep Neural Networks by Bayesian Network Structure Learning. 3051-3062 - Xuguang Duan, Wen-bing Huang, Chuang Gan, Jingdong Wang, Wenwu Zhu, Junzhou Huang:

Weakly Supervised Dense Event Captioning in Videos. 3063-3073 - Stefan Webb, Adam Golinski, Robert Zinkov, Siddharth Narayanaswamy, Tom Rainforth, Yee Whye Teh, Frank Wood:

Faithful Inversion of Generative Models for Effective Amortized Inference. 3074-3084 - Hao Cui, Radu Marinescu, Roni Khardon:

From Stochastic Planning to Marginal MAP. 3085-3095 - Hamid Jalalzai, Stéphan Clémençon, Anne Sabourin:

On Binary Classification in Extreme Regions. 3096-3104 - Yining Wang, Xi Chen, Yuan Zhou:

Near-Optimal Policies for Dynamic Multinomial Logit Assortment Selection Models. 3105-3114 - Devavrat Shah, Qiaomin Xie:

Q-learning with Nearest Neighbors. 3115-3125 - Pan Xu, Jinghui Chen, Difan Zou, Quanquan Gu:

Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization. 3126-3137 - François Portier, Bernard Delyon:

Asymptotic optimality of adaptive importance sampling. 3138-3148 - Kevin Bello, Jean Honorio:

Learning latent variable structured prediction models with Gaussian perturbations. 3149-3159 - Jiantao Jiao, Weihao Gao, Yanjun Han:

The Nearest Neighbor Information Estimator is Adaptively Near Minimax Rate-Optimal. 3160-3171 - Utkarsh Upadhyay, Abir De, Manuel Gomez Rodriguez:

Deep Reinforcement Learning of Marked Temporal Point Processes. 3172-3182 - Murat Sensoy, Lance M. Kaplan, Melih Kandemir:

Evidential Deep Learning to Quantify Classification Uncertainty. 3183-3193 - Mingyuan Zhou:

Parsimonious Bayesian deep networks. 3194-3204 - Laurent Orseau, Levi Lelis, Tor Lattimore, Theophane Weber:

Single-Agent Policy Tree Search With Guarantees. 3205-3215 - Yucen Luo, Tian Tian, Jiaxin Shi, Jun Zhu, Bo Zhang:

Semi-crowdsourced Clustering with Deep Generative Models. 3216-3226 - Benjamin Aubin, Antoine Maillard, Jean Barbier, Florent Krzakala

, Nicolas Macris, Lenka Zdeborová:
The committee machine: Computational to statistical gaps in learning a two-layers neural network. 3227-3238 - Avital Oliver, Augustus Odena, Colin Raffel, Ekin Dogus Cubuk, Ian J. Goodfellow:

Realistic Evaluation of Deep Semi-Supervised Learning Algorithms. 3239-3250 - Lixing Chen, Jie Xu, Zhuo Lu:

Contextual Combinatorial Multi-armed Bandits with Volatile Arms and Submodular Reward. 3251-3260 - Shakarim Soltanayev, Se Young Chun:

Training deep learning based denoisers without ground truth data. 3261-3271 - David Balduzzi, Karl Tuyls, Julien Pérolat, Thore Graepel:

Re-evaluating evaluation. 3272-3283 - Oisín Moran, Piergiorgio Caramazza, Daniele Faccio, Roderick Murray-Smith:

Deep, complex, invertible networks for inversion of transmission effects in multimode optical fibres. 3284-3295 - Tom Dupré la Tour, Thomas Moreau, Mainak Jas, Alexandre Gramfort:

Multivariate Convolutional Sparse Coding for Electromagnetic Brain Signals. 3296-3306 - Ofir Nachum, Shixiang Gu, Honglak Lee, Sergey Levine:

Data-Efficient Hierarchical Reinforcement Learning. 3307-3317 - Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach, Jacob Andreas, Louis-Philippe Morency, Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein, Trevor Darrell:

Speaker-Follower Models for Vision-and-Language Navigation. 3318-3329 - Edward Hughes, Joel Z. Leibo, Matthew Phillips, Karl Tuyls, Edgar A. Duéñez-Guzmán, Antonio García Castañeda, Iain Dunning, Tina Zhu, Kevin R. McKee, Raphael Koster, Heather Roff, Thore Graepel:

Inequity aversion improves cooperation in intertemporal social dilemmas. 3330-3340 - David Reeb, Andreas Doerr, Sebastian Gerwinn, Barbara Rakitsch:

Learning Gaussian Processes by Minimizing PAC-Bayesian Generalization Bounds. 3341-3351 - Nicoló Fusi, Rishit Sheth, Melih Elibol:

Probabilistic Matrix Factorization for Automated Machine Learning. 3352-3361 - Dmitry Kovalev, Peter Richtárik, Eduard Gorbunov, Elnur Gasanov:

Stochastic Spectral and Conjugate Descent Methods. 3362-3371 - Rasmus Berg Palm, Ulrich Paquet, Ole Winther:

Recurrent Relational Networks. 3372-3382 - Yitong Sun, Anna C. Gilbert, Ambuj Tewari:

But How Does It Work in Theory? Linear SVM with Random Features. 3383-3392 - Tianqi Chen, Lianmin Zheng, Eddie Q. Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos Guestrin, Arvind Krishnamurthy:

Learning to Optimize Tensor Programs. 3393-3404 - Francesco Locatello, Gideon Dresdner, Rajiv Khanna, Isabel Valera

, Gunnar Rätsch:
Boosting Black Box Variational Inference. 3405-3415 - Hassan Ashtiani, Shai Ben-David, Nicholas J. A. Harvey, Christopher Liaw, Abbas Mehrabian, Yaniv Plan:

Nearly tight sample complexity bounds for learning mixtures of Gaussians via sample compression schemes. 3416-3425 - Sriram Srinivasan, Marc Lanctot, Vinícius Flores Zambaldi, Julien Pérolat, Karl Tuyls, Rémi Munos, Michael Bowling:

Actor-Critic Policy Optimization in Partially Observable Multiagent Environments. 3426-3439 - Kamil Nar, Shankar Sastry:

Step Size Matters in Deep Learning. 3440-3448 - Yu Liu, Kris De Brabanter:

Derivative Estimation in Random Design. 3449-3458 - Krishnakumar Balasubramanian, Saeed Ghadimi:

Zeroth-order (Non)-Convex Stochastic Optimization via Conditional Gradient and Gradient Updates. 3459-3468 - Daniel D. Johnson, Daniel Gorelik, Ross Mawhorter, Kyle Suver, Weiqing Gu, Steven Xing, Cody Gabriel, Peter Sankhagowit:

Latent Gaussian Activity Propagation: Using Smoothness and Structure to Separate and Localize Sounds in Large Noisy Environments. 3469-3478 - Jing Li, Rafal Mantiuk, Junle Wang, Suiyi Ling, Patrick Le Callet:

Hybrid-MST: A Hybrid Active Sampling Strategy for Pairwise Preference Aggregation. 3479-3489 - Arno Solin, James Hensman, Richard E. Turner:

Infinite-Horizon Gaussian Processes. 3490-3499 - Minshuo Chen, Lin Yang

, Mengdi Wang, Tuo Zhao:
Dimensionality Reduction for Stationary Time Series via Stochastic Nonconvex Optimization. 3500-3510 - Zijun Wei, Boyu Wang, Minh Hoai Nguyen, Jianming Zhang, Zhe Lin, Xiaohui Shen, Radomír Mech, Dimitris Samaras:

Sequence-to-Segment Networks for Segment Detection. 3511-3520 - David M. Zoltowski, Jonathan W. Pillow:

Scaling the Poisson GLM to massive neural datasets through polynomial approximations. 3521-3531 - Yun Kuen Cheung:

Multiplicative Weights Updates with Constant Step-Size in Graphical Constant-Sum Games. 3532-3542 - Irene Y. Chen, Fredrik D. Johansson, David A. Sontag:

Why Is My Classifier Discriminatory? 3543-3554 - Ji Feng, Yang Yu, Zhi-Hua Zhou:

Multi-Layered Gradient Boosting Decision Trees. 3555-3565 - Tom Zahavy, Matan Haroush, Nadav Merlis, Daniel J. Mankowitz, Shie Mannor:

Learn What Not to Learn: Action Elimination with Deep Reinforcement Learning. 3566-3577 - Bayan Saparbayeva, Michael Minyi Zhang, Lizhen Lin:

Communication Efficient Parallel Algorithms for Optimization on Manifolds. 3578-3588 - Tal Ben-Nun, Alice Shoshana Jakobovits, Torsten Hoefler:

Neural Code Comprehension: A Learnable Representation of Code Semantics. 3589-3601 - Jiecao Chen, Qin Zhang

, Yuan Zhou:
Tight Bounds for Collaborative PAC Learning via Multiplicative Weights. 3602-3611 - Maciej Zieba, Piotr Semberecki, Tarek El-Gaaly, Tomasz Trzcinski:

BinGAN: Learning Compact Binary Descriptors with a Regularized GAN. 3612-3622 - Matthew Olson, Abraham J. Wyner, Richard Berk:

Modern Neural Networks Generalize on Small Data Sets. 3623-3632 - Aryan Mokhtari, Asuman E. Ozdaglar, Ali Jadbabaie:

Escaping Saddle Points in Constrained Optimization. 3633-3643 - Kwang-Sung Jun, Lihong Li, Yuzhe Ma, Xiaojin (Jerry) Zhu:

Adversarial Attacks on Stochastic Bandits. 3644-3653 - Daniel Ting, Eric Brochu:

Optimal Subsampling with Influence Functions. 3654-3663 - Kevin G. Jamieson, Lalit Jain:

A Bandit Approach to Sequential Experimental Design with False Discovery Control. 3664-3674 - Junzhe Zhang, Elias Bareinboim:

Equality of Opportunity in Classification: A Causal Approach. 3675-3685 - Tianyi Liu, Shiyang Li, Jianping Shi, Enlu Zhou, Tuo Zhao:

Towards Understanding Acceleration Tradeoff between Momentum and Asynchrony in Nonconvex Stochastic Optimization. 3686-3696 - Youssef Alami Mejjati, Christian Richardt, James Tompkin, Darren Cosker, Kwang In Kim:

Unsupervised Attention-guided Image-to-Image Translation. 3697-3707 - Jeremy G. Hoskins, Cameron Musco, Christopher Musco

, Babis Tsourakakis
:
Inferring Networks From Random Walk-Based Node Similarities. 3708-3719 - Zeyuan Allen-Zhu, Yuanzhi Li:

NEON2: Finding Local Minima via First-Order Oracles. 3720-3730 - Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Pai-Shun Ting, Shiyu Chang, Lisa Amini:

Zeroth-Order Stochastic Variance Reduction for Nonconvex Optimization. 3731-3741 - Hippolyt Ritter, Aleksandar Botev, David Barber:

Online Structured Laplace Approximations for Overcoming Catastrophic Forgetting. 3742-3752 - Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, Luc De Raedt:

DeepProbLog: Neural Probabilistic Logic Programming. 3753-3763 - Yi Zhou, Zhe Wang, Yingbin Liang:

Convergence of Cubic Regularization for Nonconvex Optimization under KL Property. 3764-3773 - Yuhao Wang, Chandler Squires, Anastasiya Belyaeva, Caroline Uhler:

Direct Estimation of Differences in Causal Graphs. 3774-3785 - Ainesh Bakshi, David P. Woodruff:

Sublinear Time Low-Rank Approximation of Distance Matrices. 3786-3796 - Ganesh Sundaramoorthi, Anthony J. Yezzi:

Variational PDEs for Acceleration on Manifolds and Application to Diffeomorphisms. 3797-3807 - Ankit Shah, Pritish Kamath, Julie A. Shah, Shen Li:

Bayesian Inference of Temporal Task Specifications from Demonstrations. 3808-3817 - Nevena Lazic, Craig Boutilier, Tyler Lu, Eehern Wong, Binz Roy, M. K. Ryu, Greg Imwalle:

Data center cooling using model-predictive control. 3818-3827 - Jun-Kun Wang, Jacob D. Abernethy:

Acceleration through Optimistic No-Regret Dynamics. 3828-3838 - Aladin Virmaux, Kevin Scaman:

Lipschitz regularity of deep neural networks: analysis and efficient estimation. 3839-3848 - Kaiyi Ji, Yingbin Liang:

Minimax Estimation of Neural Net Distance. 3849-3858 - Pierre-Alexandre Mattei, Jes Frellsen:

Leveraging the Exact Likelihood of Deep Latent Variable Models. 3859-3870 - Stefan Neumann

:
Bipartite Stochastic Block Models with Tiny Clusters. 3871-3881 - Enzo Tartaglione, Skjalg Lepsøy, Attilio Fiandrotti, Gianluca Francini:

Learning sparse neural networks via sensitivity-driven regularization. 3882-3892 - Xiaoxuan Zhang, Mingrui Liu, Xun Zhou, Tianbao Yang:

Faster Online Learning of Optimal Threshold for Consistent F-measure Optimization. 3893-3903 - Jingzhao Zhang, Aryan Mokhtari, Suvrit Sra, Ali Jadbabaie:

Direct Runge-Kutta Discretization Achieves Acceleration. 3904-3913 - Gamaleldin F. Elsayed, Shreya Shankar, Brian Cheung, Nicolas Papernot, Alexey Kurakin, Ian J. Goodfellow, Jascha Sohl-Dickstein:

Adversarial Examples that Fool both Computer Vision and Time-Limited Humans. 3914-3924 - Dongruo Zhou

, Pan Xu, Quanquan Gu:
Stochastic Nested Variance Reduced Gradient Descent for Nonconvex Optimization. 3925-3936 - Lionel Gueguen, Alex Sergeev, Ben Kadlec, Rosanne Liu, Jason Yosinski:

Faster Neural Networks Straight from JPEG. 3937-3948 - Tor Lattimore, Branislav Kveton, Shuai Li, Csaba Szepesvári:

TopRank: A practical algorithm for online stochastic ranking. 3949-3958 - Sanjoy Dasgupta, Akansha Dey, Nicholas Roberts, Sivan Sabato:

Learning from discriminative feature feedback. 3959-3967 - Zhen Zhang, Mianzhi Wang, Yijian Xiang, Yan Huang, Arye Nehorai:

RetGK: Graph Kernels based on Return Probabilities of Random Walks. 3968-3978 - Hao Wu, Andreas Mardt, Luca Pasquali, Frank Noé:

Deep Generative Markov State Models. 3979-3988 - Meimei Liu, Guang Cheng:

Early Stopping for Nonparametric Testing. 3989-3998 - Xiaohan Wei, Hao Yu, Qing Ling, Michael J. Neely:

Solving Non-smooth Constrained Programs with Lower Complexity than \mathcal{O}(1/\varepsilon): A Primal-Dual Homotopy Smoothing Approach. 3999-4009 - Joshua Fromm, Shwetak N. Patel, Matthai Philipose:

Heterogeneous Bitwidth Binarization in Convolutional Neural Networks. 4010-4019 - Tomas Jakab, Ankush Gupta, Hakan Bilen

, Andrea Vedaldi:
Unsupervised Learning of Object Landmarks through Conditional Image Generation. 4020-4031 - Zhiwei Deng, Jiacheng Chen, Yifang Fu, Greg Mori:

Probabilistic Neural Programmed Networks for Scene Generation. 4032-4042 - Volker Fischer, Jan Köhler, Thomas Pfeil:

The streaming rollout of deep networks - towards fully model-parallel execution. 4043-4054 - Moez Draief, Konstantin Kutzkov, Kevin Scaman, Milan Vojnovic:

KONG: Kernels for ordered-neighborhood graphs. 4055-4064 - Amir H. Khoshaman, Mohammad H. Amin:

GumBolt: Extending Gumbel trick to Boltzmann priors. 4065-4074 - Martin Magill, Faisal Z. Qureshi, Hendrick W. de Haan:

Neural Networks Trained to Solve Differential Equations Learn General Representations. 4075-4085 - Chaitanya Ryali, Angela J. Yu:

Beauty-in-averageness and its contextual modulations: A Bayesian statistical account. 4086-4096 - Patrick McClure, Charles Y. Zheng, Jakub Kaczmarzyk, John Rogers-Lee, Satrajit S. Ghosh, Dylan Nielson, Peter A. Bandettini, Francisco Pereira:

Distributed Weight Consolidation: A Brain Segmentation Case Study. 4097-4107 - Bei Jia, Surjyendu Ray, Sam Safavi, José Bento:

Efficient Projection onto the Perfect Phylogeny Model. 4108-4118 - Yu Ji, Ling Liang, Lei Deng, Youyang Zhang, Youhui Zhang, Yuan Xie:

TETRIS: TilE-matching the TRemendous Irregular Sparsity. 4119-4129 - Harsh Shrivastava, Eugene Bart, Bob Price, Hanjun Dai, Bo Dai, Srinivas Aluru:

Cooperative neural networks (CoNN): Exploiting prior independence structure for improved classification. 4130-4140 - Raman Arora, Vladimir Braverman, Jalaj Upadhyay:

Differentially Private Robust Low-Rank Approximation. 4141-4149 - Tongzhou Wang, Yi Wu, Dave Moore, Stuart J. Russell:

Meta-Learning MCMC Proposals. 4150-4160 - Shi Dong, Benjamin Van Roy:

An Information-Theoretic Analysis for Thompson Sampling with Many Actions. 4161-4169 - Eszter Vértes, Maneesh Sahani:

Flexible and accurate inference and learning for deep generative models. 4170-4179 - Jalaj Upadhyay:

The Price of Privacy for Low-rank Factorization. 4180-4191 - Sarah Dean, Horia Mania, Nikolai Matni, Benjamin Recht, Stephen Tu:

Regret Bounds for Robust Adaptive Control of the Linear Quadratic Regulator. 4192-4201 - Jie Xu, Lei Luo, Cheng Deng, Heng Huang:

Bilevel Distance Metric Learning for Robust Image Recognition. 4202-4211 - Jordan Awan, Aleksandra B. Slavkovic:

Differentially Private Uniformly Most Powerful Tests for Binomial Data. 4212-4222 - Maria Dimakopoulou, Ian Osband, Benjamin Van Roy:

Scalable Coordinated Exploration in Concurrent Reinforcement Learning. 4223-4232 - Amir Dezfouli, Richard W. Morris, Fabio T. Ramos, Peter Dayan, Bernard W. Balleine:

Integrated accounts of behavioral and neuroimaging data using flexible recurrent neural network models. 4233-4242 - Songtao Wang, Dan Li, Yang Cheng, Jinkun Geng, Yanshu Wang, Shuai Wang, Shu-Tao Xia, Jianping Wu:

BML: A High-performance, Low-cost Gradient Synchronization Algorithm for DML Training. 4243-4253 - Hiroyuki Kasai, Bamdev Mishra:

Inexact trust-region algorithms on Riemannian manifolds. 4254-4265 - Nitin Bansal, Xiaohan Chen, Zhangyang Wang:

Can We Gain More from Orthogonality Regularizations in Training Deep Networks? 4266-4276 - Kwangjun Ahn, Kangwook Lee, Hyunseung Cha, Changho Suh:

Binary Rating Estimation with Graph Side Information. 4277-4288 - Seyed Mehran Kazemi, David Poole:

SimplE Embedding for Link Prediction in Knowledge Graphs. 4289-4300 - Roshan Shariff, Or Sheffet:

Differentially Private Contextual Linear Bandits. 4301-4311 - Abram L. Friesen, Pedro M. Domingos:

Submodular Field Grammars: Representation, Inference, and Application to Image Parsing. 4312-4322 - Risheng Liu, Shichao Cheng, Xiaokun Liu, Long Ma, Xin Fan, Zhongxuan Luo:

A Bridging Framework for Model Optimization and Deep Propagation. 4323-4332 - Nan Jiang, Alex Kulesza, Satinder Singh:

Completing State Representations using Spectral Learning. 4333-4342 - Yining Wang, Sivaraman Balakrishnan, Aarti Singh:

Optimization of Smooth Functions with Noisy Observations: Local Minimax Rates. 4343-4354 - Shiyu Liang, Ruoyu Sun, Jason D. Lee, R. Srikant:

Adding One Neuron Can Eliminate All Bad Local Minima. 4355-4365 - Tatsuro Kawamoto, Masashi Tsubaki, Tomoyuki Obuchi:

Mean-field theory of graph neural networks in graph partitioning. 4366-4376 - Lin F. Yang

, Raman Arora, Vladimir Braverman, Tuo Zhao:
The Physical Systems Behind Optimization Algorithms. 4377-4386 - Flavio Chierichetti, Anirban Dasgupta, Shahrzad Haddadan, Ravi Kumar, Silvio Lattanzi:

Mallows Models for Top-k Lists. 4387-4397 - Rui Shu, Hung H. Bui, Shengjia Zhao, Mykel J. Kochenderfer, Stefano Ermon:

Amortized Inference Regularization. 4398-4407 - Kyungjae Lee, Sungjoon Choi, Songhwai Oh:

Maximum Causal Tsallis Entropy Imitation Learning. 4408-4418 - Song Zhou, Swati Gupta, Madeleine Udell:

Limited Memory Kelley's Method Converges for Composite Convex and Submodular Objectives. 4419-4429 - Haitian Sun, William W. Cohen, Lidong Bing:

Semi-Supervised Learning with Declaratively Specified Entropy Constraints. 4430-4440 - Linfeng Zhang, Jiequn Han, Han Wang, Wissam Saidi, Roberto Car, Weinan E:

End-to-end Symmetry Preserving Inter-atomic Potential Energy Model for Finite and Extended Systems. 4441-4451 - Sebastian U. Stich, Jean-Baptiste Cordonnier, Martin Jaggi:

Sparsified SGD with Memory. 4452-4463 - Zelda E. Mariet, Suvrit Sra, Stefanie Jegelka:

Exponentiated Strongly Rayleigh Distributions. 4464-4474 - Justin Domke, Daniel Sheldon:

Importance Weighting and Variational Inference. 4475-4484 - Ye Jia, Yu Zhang, Ron J. Weiss, Quan Wang, Jonathan Shen, Fei Ren, Zhifeng Chen, Patrick Nguyen, Ruoming Pang, Ignacio López-Moreno, Yonghui Wu:

Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis. 4485-4495 - Yexiang Xue, Yang Yuan, Zhitian Xu, Ashish Sabharwal:

Expanding Holographic Embeddings for Knowledge Completion. 4496-4506 - Jorge A. Mendez, Shashank Shivkumar, Eric Eaton:

Lifelong Inverse Reinforcement Learning. 4507-4518 - Wenbo Guo

, Sui Huang, Yunzhe Tao, Xinyu Xing, Lin Lin:
Explaining Deep Learning Models - A Bayesian Non-parametric Approach. 4519-4529 - Yaodong Yu, Pan Xu, Quanquan Gu:

Third-order Smoothness Helps: Faster Stochastic Optimization Algorithms for Finding Local Minima. 4530-4540 - Lie He, An Bian, Martin Jaggi:

COLA: Decentralized Linear Learning. 4541-4551 - Edward Choi, Cao Xiao, Walter F. Stewart, Jimeng Sun:

MiME: Multilevel Medical Embedding of Electronic Health Records for Predictive Healthcare. 4552-4562 - Wen-bing Huang, Tong Zhang, Yu Rong, Junzhou Huang:

Adaptive Sampling Towards Fast Graph Representation Learning. 4563-4572 - Samuel Yeom, Anupam Datta, Matt Fredrikson:

Hunting for Discriminatory Proxies in Linear Regression Models. 4573-4583 - Tianyu Pang, Chao Du, Yinpeng Dong, Jun Zhu:

Towards Robust Detection of Adversarial Examples. 4584-4594 - Xin Yang, Ke Xu, Shaozhe Chen, Shengfeng He, Baocai Yin, Rynson W. H. Lau:

Active Matting. 4595-4605 - Haidar Khan, Bülent Yener:

Learning filter widths of spectral decompositions with wavelets. 4606-4617 - Dan Alistarh, Zeyuan Allen-Zhu, Jerry Li:

Byzantine Stochastic Gradient Descent. 4618-4628 - Bianca Dumitrascu, Karen Feng, Barbara E. Engelhardt:

PG-TS: Improved Thompson Sampling for Logistic Contextual Bandits. 4629-4638 - Elad Hazan, Holden Lee, Karan Singh, Cyril Zhang, Yi Zhang:

Spectral Filtering for General Linear Dynamical Systems. 4639-4648 - Zeyu Zheng, Junhyuk Oh, Satinder Singh:

On Learning Intrinsic Rewards for Policy Gradient Methods. 4649-4659 - Sanjeeb Dash, Oktay Günlük

, Dennis Wei:
Boolean Decision Rules via Column Generation. 4660-4670 - Liqun Chen, Shuyang Dai, Chenyang Tao, Haichao Zhang, Zhe Gan, Dinghan Shen, Yizhe Zhang, Guoyin Wang, Ruiyi Zhang, Lawrence Carin:

Adversarial Text Generation via Feature-Mover's Distance. 4671-4682 - Mingrui Liu, Xiaoxuan Zhang, Lijun Zhang, Rong Jin, Tianbao Yang:

Fast Rates of ERM and Stochastic Approximation: Adaptive to Error Bound Conditions. 4683-4694 - Shahin Shahrampour, Vahid Tarokh:

Learning Bounds for Greedy Approximation with Explicit Feature Maps from Multiple Kernels. 4695-4706 - Malik Magdon-Ismail, Lirong Xia:

A Mathematical Model For Optimal Decisions In A Representative Democracy. 4707-4716 - Nishant Desai, Andrew Critch, Stuart J. Russell:

Negotiable Reinforcement Learning for Pareto Optimal Sequential Decision-Making. 4717-4725 - Stanislav Morozov, Artem Babenko:

Non-metric Similarity Graphs for Maximum Inner Product Search. 4726-4735 - Yi Tay, Anh Tuan Luu, Siu Cheung Hui:

Recurrently Controlled Recurrent Networks. 4736-4748 - Kaito Fujii, Tasuku Soma:

Fast greedy algorithms for dictionary selection with generalized sparsity constraints. 4749-4758 - Kurtland Chua, Roberto Calandra, Rowan McAllister, Sergey Levine:

Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models. 4759-4770 - Venkata Krishna Pillutla, Vincent Roulet, Sham M. Kakade, Zaïd Harchaoui:

A Smoother Way to Train Structured Prediction Models. 4771-4783 - Raksha Kumaraswamy, Matthew Schlegel, Adam White, Martha White:

Context-dependent upper-confidence bounds for directed exploration. 4784-4794 - Rudy Bunel, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, Pawan Kumar Mudigonda:

A Unified View of Piecewise Linear Neural Network Verification. 4795-4804 - Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, Jure Leskovec:

Hierarchical Graph Representation Learning with Differentiable Pooling. 4805-4815 - Quoc Tran-Dinh:

Non-Ergodic Alternating Proximal Augmented Lagrangian Algorithms with Optimal Rates. 4816-4824 - Boyla Mainsah, Dmitry Kalika, Leslie M. Collins, Siyuan Liu, Chandra S. Throckmorton:

Information-based Adaptive Stimulus Selection to Optimize Communication Efficiency in Brain-Computer Interfaces. 4825-4835 - Soheil Feizi, Hamid Javadi, Jesse M. Zhang, David Tse:

Porcupine Neural Networks: Approximating Neural Network Landscapes. 4836-4846 - Michael P. Kim, Omer Reingold, Guy N. Rothblum:

Fairness Through Computationally-Bounded Awareness. 4847-4857 - Mingrui Liu, Zhe Li, Xiaoyu Wang, Jinfeng Yi, Tianbao Yang:

Adaptive Negative Curvature Descent with Applications in Non-convex Optimization. 4858-4867 - Chi Jin, Zeyuan Allen-Zhu, Sébastien Bubeck, Michael I. Jordan:

Is Q-Learning Provably Efficient? 4868-4878 - Xin Zhang, Armando Solar-Lezama

, Rishabh Singh:
Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic Corrections. 4879-4890 - Leena Chennuru Vankadara, Ulrike von Luxburg:

Measures of distortion for machine learning. 4891-4900 - Chi Jin, Lydia T. Liu, Rong Ge, Michael I. Jordan:

On the Local Minima of the Empirical Risk. 4901-4910 - Yi Tay, Anh Tuan Luu, Siu Cheung Hui, Jian Su:

Densely Connected Attention Propagation for Reading Comprehension. 4911-4922 - Virag Shah, Jose H. Blanchet, Ramesh Johari:

Bandit Learning with Positive Externalities. 4923-4933 - Wenbo Wang, Xingye Qiao:

Learning Confidence Sets using Support Vector Machines. 4934-4943 - Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, Luca Daniel:

Efficient Neural Network Robustness Certification with General Activation Functions. 4944-4953 - Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, Michael W. Mahoney:

Hessian-based Analysis of Large Batch Training and Robustness to Adversaries. 4954-4964 - Satoshi Koide, Keisuke Kawano, Takuro Kutsuna:

Neural Edit Operations for Biological Sequences. 4965-4975 - Yu Terada, Tomoyuki Obuchi, Takuya Isomura, Yoshiyuki Kabashima:

Objective and efficient inference for couplings in neuronal networks. 4976-4985 - Yao Li, Minhao Cheng

, Kevin Fujii, Fushing Hsieh, Cho-Jui Hsieh:
Learning from Group Comparisons: Exploiting Higher Order Interactions. 4986-4995 - Vikas K. Garg:

Supervising Unsupervised Learning. 4996-5006 - Quan Zhang, Mingyuan Zhou

:
Nonparametric Bayesian Lomax delegate racing for survival analysis with competing risks. 5007-5018 - Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, Aleksander Madry:

Adversarially Robust Generalization Requires More Data. 5019-5031 - Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Kenneth O. Stanley, Jeff Clune:

Improving Exploration in Evolution Strategies for Deep Reinforcement Learning via a Population of Novelty-Seeking Agents. 5032-5043 - Gabriele Farina, Nicola Gatti, Tuomas Sandholm:

Practical exact algorithm for trembling-hand equilibrium refinements in games. 5044-5054 - Tianyi Chen, Georgios B. Giannakis, Tao Sun, Wotao Yin:

LAG: Lazily Aggregated Gradient for Communication-Efficient Distributed Learning. 5055-5065 - Quanming Yao, James T. Kwok:

Scalable Robust Matrix Factorization with Nonconvex Loss. 5066-5075 - Michael J. Morais, Jonathan W. Pillow:

Power-law efficient neural codes provide general link between perceptual bias and discriminability. 5076-5085 - Ricson Cheng, Ziyan Wang, Katerina Fragkiadaki:

Geometry-Aware Recurrent Neural Networks for Active Visual Recognition. 5086-5096 - Ayush Jaiswal, Rex Yue Wu, Wael Abd-Almageed, Prem Natarajan:

Unsupervised Adversarial Invariance. 5097-5107 - Lajanugen Logeswaran, Honglak Lee, Samy Bengio:

Content preserving text generation with attribute controls. 5108-5118 - Siwei Wang

, Longbo Huang:
Multi-armed Bandits with Compensation. 5119-5128 - Mingchao Yu, Zhifeng Lin, Krishna Narra, Songze Li, Youjie Li, Nam Sung Kim, Alexander G. Schwing, Murali Annavaram, Salman Avestimehr:

GradiVeQ: Vector Quantization for Bandwidth-Efficient Gradient Aggregation in Distributed CNN Training. 5129-5139 - Zhengyuan Zhou, Panayotis Mertikopoulos, Susan Athey, Nicholas Bambos, Peter W. Glynn, Yinyu Ye:

Learning in Games with Lossy Feedback. 5140-5150 - Ron Banner, Itay Hubara, Elad Hoffer, Daniel Soudry:

Scalable methods for 8-bit training of neural networks. 5151-5159 - Zhihui Zhu, Xiao Li, Kai Liu, Qiuwei Li:

Dropping Symmetry for Fast Symmetric Nonnegative Matrix Factorization. 5160-5170 - Muhan Zhang, Yixin Chen:

Link Prediction Based on Graph Neural Networks. 5171-5181 - Dalin Guo, Angela J. Yu:

Why so gloomy? A Bayesian explanation of human pessimism bias in the multi-armed bandit task. 5182-5191 - Aaron Sidford, Mengdi Wang, Xian Wu, Lin Yang

, Yinyu Ye:
Near-Optimal Time and Sample Complexities for Solving Markov Decision Processes with a Generative Model. 5192-5202 - Hongyang Gao, Zhengyang Wang, Shuiwang Ji:

ChannelNets: Compact and Efficient Convolutional Neural Networks via Channel-Wise Convolutions. 5203-5211 - Shoubo Hu, Zhitang Chen, Vahid Partovi Nia, Lai-Wan Chan, Yanhui Geng:

Causal Inference and Mechanism Clustering of A Mixture of Additive Noise Models. 5212-5222 - Alexandre Noll Marques, Rémi Lam, Karen Willcox:

Contour location via entropy reduction leveraging multiple information sources. 5223-5233 - Mehdi S. M. Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, Sylvain Gelly:

Assessing Generative Models via Precision and Recall. 5234-5243 - Yonathan Efroni, Gal Dalal, Bruno Scherrer, Shie Mannor:

Multiple-Step Greedy Policies in Approximate and Online Reinforcement Learning. 5244-5253 - Farzan Farnia, David Tse:

A Convex Duality Framework for GANs. 5254-5263 - Alan Malek, Peter L. Bartlett:

Horizon-Independent Minimax Linear Regression. 5264-5273 - Neha Gupta, Aaron Sidford:

Exploiting Numerical Sparsity for Efficient Learning : Faster Eigenvector Computation and Regression. 5274-5283 - Erik M. Lindgren, Murat Kocaoglu, Alexandros G. Dimakis, Sriram Vishwanath:

Experimental Design for Cost-Aware Learning of Causal Graphs. 5284-5294 - Aran Nayebi, Daniel Bear, Jonas Kubilius, Kohitij Kar, Surya Ganguli, David Sussillo, James J. DiCarlo, Daniel L. K. Yamins:

Task-Driven Convolutional Recurrent Models of the Visual System. 5295-5306 - Abhishek Gupta, Russell Mendonca, Yuxuan Liu, Pieter Abbeel, Sergey Levine:

Meta-Reinforcement Learning of Structured Exploration Strategies. 5307-5316 - Tomoya Murata, Taiji Suzuki:

Sample Efficient Stochastic Gradient Iterative Hard Thresholding Method for Stochastic Sparse Linear Regression with Limited Attribute Observation. 5317-5326 - Neal Jean, Sang Michael Xie, Stefano Ermon:

Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance. 5327-5338 - Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C. Duchi, Vittorio Murino, Silvio Savarese:

Generalizing to Unseen Domains via Adversarial Data Augmentation. 5339-5349 - Octavian-Eugen Ganea, Gary Bécigneul, Thomas Hofmann:

Hyperbolic Neural Networks. 5350-5360 - Qiang Liu, Lihong Li, Ziyang Tang, Dengyong Zhou:

Breaking the Curse of Horizon: Infinite-Horizon Off-Policy Estimation. 5361-5371 - Marcell Vazquez-Chanlatte

, Susmit Jha, Ashish Tiwari, Mark K. Ho, Sanjit A. Seshia:
Learning Task Specifications from Demonstrations. 5372-5382 - Anqi Wu, Stan L. Pashkovski, Sandeep R. Datta, Jonathan W. Pillow:

Learning a latent manifold of odor representations from neural responses in piriform cortex. 5383-5393 - Lior Kamma, Casper Benjamin Freksen, Kasper Green Larsen:

Fully Understanding The Hashing Trick. 5394-5404 - Rein Houthooft, Yuhua Chen, Phillip Isola, Bradly C. Stadie, Filip Wolski, Jonathan Ho, Pieter Abbeel:

Evolved Policy Gradients. 5405-5414 - Jeffrey Pennington, Pratik Worah:

The Spectrum of the Fisher Information Matrix of a Single-Hidden-Layer Neural Network. 5415-5424 - John T. Halloran, David M. Rocke:

Learning Concave Conditional Likelihood Models for Improved Analysis of Tandem Mass Spectra. 5425-5435 - Uri Stemmer, Haim Kaplan:

Differentially Private k-Means with Constant Multiplicative Error. 5436-5446 - Alberto Maria Metelli, Matteo Papini, Francesco Faccio, Marcello Restelli:

Policy Optimization via Importance Sampling. 5447-5459 - Weihao Kong, Gregory Valiant:

Estimating Learnability in the Sublinear Data Regime. 5460-5469 - Shivapratap Gopakumar, Sunil Gupta, Santu Rana, Vu Nguyen, Svetha Venkatesh

:
Algorithmic Assurance: An Active Approach to Algorithmic Testing using Bayesian Optimisation. 5470-5478 - Xiaowei Chen, Weiran Huang, Wei Chen, John C. S. Lui:

Community Exploration: From Offline Optimization to Online Learning. 5479-5488 - Madhav Nimishakavi, Pratik Kumar Jawanpuria, Bamdev Mishra:

A Dual Framework for Low-rank Tensor Completion. 5489-5500 - Geneviève Robin, Hoi-To Wai, Julie Josse, Olga Klopp, Eric Moulines:

Low-rank Interaction with Sparse Additive Effects Model for Large Data Frames. 5501-5511 - Zehong Hu, Yitao Liang, Jie Zhang, Zhao Li, Yang Liu:

Inference Aided Reinforcement Learning for Incentive Mechanism Design in Crowdsourcing. 5512-5522 - Shikib Mehri, Leonid Sigal:

Middle-Out Decoding. 5523-5534 - Yi Xu, Rong Jin, Tianbao Yang:

First-order Stochastic Algorithms for Escaping From Saddle Points in Almost Linear Time. 5535-5545 - Heinrich Jiang, Been Kim, Melody Y. Guan, Maya R. Gupta:

To Trust Or Not To Trust A Classifier. 5546-5557 - Wonyeol Lee, Hangyeol Yu, Hongseok Yang:

Reparameterization Gradient for Non-differentiable Models. 5558-5568 - Zhize Li, Jian Li:

A Simple Proximal Stochastic Gradient Method for Nonsmooth Nonconvex Optimization. 5569-5579 - Mike Wu, Noah D. Goodman:

Multimodal Generative Models for Scalable Weakly-Supervised Learning. 5580-5590 - Richard Y. Zhang, Cédric Josz, Somayeh Sojoudi, Javad Lavaei:

How Much Restricted Isometry is Needed In Nonconvex Matrix Recovery? 5591-5602 - Stuart Armstrong, Sören Mindermann:

Occam's razor is insufficient to infer the preferences of irrational agents. 5603-5614 - Alessandro Rudi, Carlo Ciliberto, Gian Maria Marconi, Lorenzo Rosasco:

Manifold Structured Prediction. 5615-5626 - Laming Chen, Guoxin Zhang, Eric Zhou:

Fast Greedy MAP Inference for Determinantal Point Process to Improve Recommendation Diversity. 5627-5638 - Yanlin Han, Piotr J. Gmytrasiewicz:

Learning Others' Intentional Models in Multi-Agent Settings Using Interactive POMDPs. 5639-5647 - Jieming Mao, Renato Paes Leme, Jon Schneider:

Contextual Pricing for Lipschitz Buyers. 5648-5656 - Elad Hazan, Wei Hu, Yuanzhi Li, Zhiyuan Li:

Online Improper Learning with an Approximation Oracle. 5657-5665 - Mario Bravo, David S. Leslie, Panayotis Mertikopoulos:

Bandit Learning in Concave N-Person Games. 5666-5676 - Alessandro Rudi, Daniele Calandriello, Luigi Carratino, Lorenzo Rosasco:

On Fast Leverage Score Sampling and Optimal Learning. 5677-5687 - Vikash Goel, Jameson Weng, Pascal Poupart:

Unsupervised Video Object Segmentation for Deep Reinforcement Learning. 5688-5699 - Nicholas A. Roy, Ji Hyun Bak, Athena Akrami, Carlos D. Brody, Jonathan W. Pillow:

Efficient inference for time-varying behavior during learning. 5700-5710 - Lee-Ad Gottlieb, Eran Kaufman, Aryeh Kontorovich, Gabriel Nivasch:

Learning convex polytopes with margin. 5711-5721 - Arnu Pretorius, Elan Van Biljon, Steve Kroon, Herman Kamper:

Critical initialisation for deep signal propagation in noisy rectifier neural networks. 5722-5731 - Ari S. Morcos, Maithra Raghu, Samy Bengio:

Insights on representational similarity in neural networks with canonical correlation. 5732-5741 - Dilin Wang, Hao Liu, Qiang Liu:

Variational Inference with Tail-adaptive f-Divergence. 5742-5752 - Jian-Qiao Zhu, Adam Sanborn, Nick Chater:

Mental Sampling in Multimodal Representations. 5753-5764 - Ilija Bogunovic, Jonathan Scarlett, Stefanie Jegelka, Volkan Cevher

:
Adversarially Robust Optimization with Gaussian Processes. 5765-5775 - Yu Zhang, Ying Wei, Qiang Yang:

Learning to Multitask. 5776-5787 - Sean Welleck, Zixin Yao, Yu Gai, Jialin Mao, Zheng Zhang, Kyunghyun Cho:

Loss Functions for Multiset Prediction. 5788-5797 - Gennaro Auricchio, Federico Bassetti, Stefano Gualandi, Marco Veneroni:

Computing Kantorovich-Wasserstein Distances on d-dimensional histograms using (d+1)-partite graphs. 5798-5808 - Michael Tsang, Hanpeng Liu, Sanjay Purushotham, Pavankumar Murali, Yan Liu:

Neural Interaction Transparency (NIT): Disentangling Learned Interactions for Improved Interpretability. 5809-5818 - Liheng Zhang, Marzieh Edraki, Guo-Jun Qi:

CapProNet: Deep Feature Learning via Orthogonal Projections onto Capsule Subspaces. 5819-5828 - Trong Dinh Thac Do, Longbing Cao:

Gamma-Poisson Dynamic Matrix Factorization Embedded with Metadata Influence. 5829-5840 - Bo Han, Jiangchao Yao, Gang Niu, Mingyuan Zhou, Ivor W. Tsang

, Ya Zhang, Masashi Sugiyama:
Masking: A New Perspective of Noisy Supervision. 5841-5851 - Eitan Richardson, Yair Weiss:

On GANs and GMMs. 5852-5863 - Giulia Luise, Alessandro Rudi, Massimiliano Pontil, Carlo Ciliberto:

Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance. 5864-5874 - Stepan Tulyakov, Anton Ivanov, François Fleuret:

Practical Deep Stereo (PDS): Toward applications-friendly deep stereo matching. 5875-5885 - Toni Karvonen, Chris J. Oates, Simo Särkkä:

A Bayes-Sard Cubature Method. 5886-5897 - Zunlei Feng, Xinchao Wang, Chenglong Ke, Anxiang Zeng, Dacheng Tao, Mingli Song:

Dual Swap Disentangling. 5898-5908 - Tianyi Zhou, Shengjie Wang, Jeff A. Bilmes:

Diverse Ensemble Evolution: Curriculum Data-Model Marriage. 5909-5920 - Takashi Ishida, Gang Niu, Masashi Sugiyama:

Binary Classification from Positive-Confidence Data. 5921-5932 - Michael Tschannen, Eirikur Agustsson, Mario Lucic:

Deep Generative Models for Distribution-Preserving Lossy Compression. 5933-5944 - Alberto Bernacchia, Máté Lengyel, Guillaume Hennequin:

Exact natural gradient in deep linear networks and its application to the nonlinear case. 5945-5954 - Yunho Jeon, Junmo Kim:

Constructing Fast Network through Deconstruction of Convolution. 5955-5965 - Chenshen Wu, Luis Herranz, Xialei Liu, Yaxing Wang, Joost van de Weijer, Bogdan Raducanu:

Memory Replay GANs: Learning to Generate New Categories without Forgetting. 5966-5976 - Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, Cédric Renggli:

The Convergence of Sparsified Gradient Methods. 5977-5987 - Gustavo Malkomes, Roman Garnett:

Automating Bayesian optimization with Bayesian optimization. 5988-5997 - Yunlong Yu, Zhong Ji, Yanwei Fu, Jichang Guo, Yanwei Pang, Zhongfei (Mark) Zhang:

Stacked Semantics-Guided Attention Model for Fine-Grained Zero-Shot Learning. 5998-6007 - Dimitrios Milios, Raffaello Camoriano, Pietro Michiardi, Lorenzo Rosasco, Maurizio Filippone:

Dirichlet-based Gaussian Processes for Large-scale Calibrated Classification. 6008-6018 - Xiaoxi He, Zimu Zhou, Lothar Thiele:

Multi-Task Zipping via Layer-wise Neuron Sharing. 6019-6029 - Oren Mangoubi, Nisheeth K. Vishnoi:

Dimensionally Tight Bounds for Second-Order Hamiltonian Monte Carlo. 6030-6040 - David G. Harris, Shi Li, Aravind Srinivasan, Khoa Trinh, Thomas W. Pensyl:

Approximation algorithms for stochastic clustering. 6041-6050 - Xiaodong Cui, Wei Zhang, Zoltán Tüske, Michael Picheny:

Evolutionary Stochastic Gradient Descent for Optimization of Deep Neural Networks. 6051-6061 - Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama

, Josh Tenenbaum:
Learning to Infer Graphics Programs from Hand-Drawn Images. 6062-6071 - Chongxuan Li, Max Welling, Jun Zhu, Bo Zhang:

Graphical Generative Adversarial Networks. 6072-6083 - Ho Chung Leon Law, Dino Sejdinovic, Ewan Cameron, Tim C. D. Lucas, Seth R. Flaxman, Katherine Battle, Kenji Fukumizu:

Variational Learning on Aggregate Outputs with Gaussian Processes. 6084-6094 - Boyuan Pan, Yazheng Yang, Hao Li, Zhou Zhao, Yueting Zhuang, Deng Cai, Xiaofei He:

MacNet: Transferring Knowledge from Machine Comprehension to Sequence-to-Sequence Models. 6095-6105 - Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras, Tom Goldstein:

Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks. 6106-6116 - Romain Lopez, Jeffrey Regier, Michael I. Jordan, Nir Yosef:

Information Constraints on Auto-Encoding Variational Bayes. 6117-6128 - Seungryong Kim, Stephen Lin, Sangryul Jeon, Dongbo Min, Kwanghoon Sohn:

Recurrent Transformer Networks for Semantic Correspondence. 6129-6139 - Jianjun Yuan, Andrew G. Lamperski:

Online convex optimization for cumulative constraints. 6140-6149 - David Madras, Toniann Pitassi, Richard S. Zemel:

Predict Responsibly: Improving Fairness and Accuracy by Learning to Defer. 6150-6160 - Florian Schmidt, Thomas Hofmann:

Deep State Space Models for Unconditional Word Generation. 6161-6171 - Hongzhou Lin, Stefanie Jegelka:

ResNet with one-neuron hidden layers is a Universal Approximator. 6172-6181 - Andrea Tirinzoni, Rafael Rodríguez-Sánchez, Marcello Restelli:

Transfer of Value Functions via Variational Methods. 6182-6192 - Ian Davidson, Antoine Gourru, S. S. Ravi:

The Cluster Description Problem - Complexity Results, Formulations and Approximations. 6193-6203 - Ilias Diakonikolas, Daniel M. Kane, Alistair Stewart:

Sharp Bounds for Generalized Uniformity Testing. 6204-6213 - Egor Burkov, Victor S. Lempitsky:

Deep Neural Networks with Box Convolutions. 6214-6224 - Weiyang Liu, Rongmei Lin, Zhen Liu, Lixin Liu, Zhiding Yu, Bo Dai, Le Song:

Learning towards Minimum Hyperspherical Energy. 6225-6236 - Yuki Ono, Eduard Trulls, Pascal Fua, Kwang Moo Yi:

LF-Net: Learning Local Features from Images. 6237-6247 - Aaron Mishkin, Frederik Kunstner, Didrik Nielsen, Mark Schmidt, Mohammad Emtiyaz Khan:

SLANG: Fast Structured Covariance Approximations for Bayesian Deep Learning with Natural Gradient. 6248-6258 - Bart van Merrienboer, Dan Moldovan, Alexander B. Wiltschko:

Tangent: Automatic differentiation using source-code transformation for dynamically typed array programming. 6259-6268 - AmirEmad Ghassami, Negar Kiyavash, Biwei Huang, Kun Zhang:

Multi-domain Causal Structure Learning in Linear Systems. 6269-6279 - Borja Balle, Gilles Barthe, Marco Gaboardi

:
Privacy Amplification by Subsampling: Tight Analyses via Couplings and Divergences. 6280-6290 - Qing Wang, Jiechao Xiong, Lei Han, Peng Sun, Han Liu, Tong Zhang:

Exponentially Weighted Imitation Learning for Batched Historical Data. 6291-6300 - Dennis Leung, Mathias Drton:

Algebraic tests of general Gaussian latent tree models. 6301-6310 - Minjia Zhang, Wenhan Wang, Xiaodong Liu, Jianfeng Gao, Yuxiong He:

Navigating with Graph Representations for Fast and Scalable Decoding of Neural Language Models. 6311-6322 - Colin Graber, Ofer Meshi, Alexander G. Schwing:

Deep Structured Prediction with Nonlinear Output Transformations. 6323-6334 - Emilie Kaufmann, Wouter M. Koolen, Aurélien Garivier:

Sequential Test for the Lowest Mean: From Thompson to Murphy Sampling. 6335-6345 - Bargav Jayaraman, Lingxiao Wang, David Evans, Quanquan Gu:

Distributed Learning without Distress: Privacy-Preserving Empirical Risk Minimization. 6346-6357 - Marek Wydmuch, Kalina Jasinska, Mikhail Kuznetsov, Róbert Busa-Fekete, Krzysztof Dembczynski:

A no-regret generalization of hierarchical softmax to extreme multi-label classification. 6358-6368 - Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, Suman Jana:

Efficient Formal Safety Analysis of Neural Networks. 6369-6379 - Michael Teng, Frank Wood:

Bayesian Distributed Stochastic Gradient Descent. 6380-6390 - Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, Tom Goldstein:

Visualizing the Loss Landscape of Neural Nets. 6391-6401 - Jonathan R. Ullman, Adam D. Smith, Kobbi Nissim, Uri Stemmer, Thomas Steinke:

The Limits of Post-Selection Generalization. 6402-6411 - Jiaxuan You, Bowen Liu, Zhitao Ying, Vijay S. Pande, Jure Leskovec:

Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. 6412-6422 - Anirban Laha, Saneem Ahmed Chemmengath, Priyanka Agrawal, Mitesh M. Khapra, Karthik Sankaranarayanan, Harish G. Ramaswamy:

On Controllable Sparse Alternatives to Softmax. 6423-6433 - Michal Rolínek, Georg Martius:

L4: Practical loss-based stepsize adaptation for deep learning. 6434-6444 - Jack Klys, Jake Snell, Richard S. Zemel:

Learning Latent Subspaces in Variational Autoencoders. 6445-6455 - Qiuyuan Huang, Pengchuan Zhang, Dapeng Oliver Wu, Lei Zhang:

Turbo Learning for CaptionBot and DrawingBot. 6456-6466 - Lijun Wu, Fei Tian, Yingce Xia, Yang Fan, Tao Qin, Jian-Huang Lai, Tie-Yan Liu:

Learning to Teach with Dynamic Loss Functions. 6467-6478 - Edward J. Smith, Scott Fujimoto, David Meger:

Multi-View Silhouette and Depth Decomposition for High Resolution 3D Object Representation. 6479-6489 - Bolton Bailey, Matus Telgarsky:

Size-Noise Tradeoffs in Generative Networks. 6490-6500 - Kfir Yehuda Levy, Alp Yurtsever, Volkan Cevher

:
Online Adaptive Methods, Universality and Acceleration. 6501-6510 - Kaiyu Yue, Ming Sun, Yuchen Yuan, Feng Zhou, Errui Ding, Fuxin Xu:

Compact Generalized Non-local Network. 6511-6520 - Huishuai Zhang, Wei Chen, Tie-Yan Liu:

On the Local Hessian in Back-propagation. 6521-6531 - Blake E. Woodworth, Vitaly Feldman, Saharon Rosset, Nati Srebro:

The Everlasting Database: Statistical Validity at a Fair Price. 6532-6541 - Yusuke Tsuzuku, Issei Sato, Masashi Sugiyama:

Lipschitz-Margin Training: Scalable Certification of Perturbation Invariance for Deep Neural Networks. 6542-6551 - Shen-Yi Zhao, Gong-Duo Zhang, Ming-Wei Li, Wu-Jun Li:

Proximal SCOPE for Distributed Sparse Learning. 6552-6561 - Alexander Munteanu, Chris Schwiegelshohn, Christian Sohler

, David P. Woodruff:
On Coresets for Logistic Regression. 6562-6571 - Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, David Duvenaud:

Neural Ordinary Differential Equations. 6572-6583 - Daan Wynen, Cordelia Schmid, Julien Mairal:

Unsupervised Learning of Artistic Styles with Archetypal Style Analysis. 6584-6593 - Asier Mujika, Florian Meier, Angelika Steger:

Approximating Real-Time Recurrent Learning with Random Kronecker Factors. 6594-6603 - Jamie Hayes, Olga Ohrimenko

:
Contamination Attacks and Mitigation in Multi-Party Machine Learning. 6604-6616 - Sheng Chen, Arindam Banerjee:

An Improved Analysis of Alternating Minimization for Structured Multi-Response Regression. 6617-6628 - Shailee Jain, Alexander Huth:

Incorporating Context into Language Encoding Models for fMRI. 6629-6638 - Liudmila Ostroumova Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, Andrey Gulin:

CatBoost: unbiased boosting with categorical features. 6639-6649 - I (Eli) Chien, Chao Pan, Olgica Milenkovic:

Query K-means Clustering and the Double Dixie Cup Problem. 6650-6659 - Zhouyuan Huo, Bin Gu, Heng Huang:

Training Neural Networks Using Features Replay. 6660-6669 - Menghan Wang, Mingming Gong, Xiaolin Zheng, Kun Zhang:

Modeling Dynamic Missingness of Implicit Feedback for Recommendation. 6670-6679 - Marta Avalos, Richard Nock, Cheng Soon Ong, Julien Rouar, Ke Sun:

Representation Learning of Compositional Data. 6680-6690 - Mikio C. Aoi, Jonathan W. Pillow:

Model-based targeted dimensionality reduction for neuronal population data. 6691-6700 - Michael Arbel, Danica J. Sutherland, Mikolaj Binkowski, Arthur Gretton:

On gradient regularizers for MMD GANs. 6701-6711 - Pablo Moreno-Muñoz, Antonio Artés-Rodríguez, Mauricio A. Álvarez:

Heterogeneous Multi-output Gaussian Process Prediction. 6712-6721 - Jack Baker, Paul Fearnhead, Emily B. Fox, Christopher Nemeth:

Large-Scale Stochastic Sampling from the Probability Simplex. 6722-6732 - Raman Arora, Michael Dinitz

, Teodor Vanislavov Marinov, Mehryar Mohri:
Policy Regret in Repeated Games. 6733-6742 - Hendrik Fichtenberger, Dennis Rohde:

A Theory-Based Evaluation of Nearest Neighbor Models Put Into Practice. 6743-6754 - Jonas Adler, Sebastian Lunz:

Banach Wasserstein GAN. 6755-6764 - Ming Yu, Zhuoran Yang, Tuo Zhao, Mladen Kolar, Zhaoran Wang:

Provable Gaussian Embedding with One Observation. 6765-6775 - Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, Yitan Li:

BRITS: Bidirectional Recurrent Imputation for Time Series. 6776-6786 - Yelong Shen, Jianshu Chen, Po-Sen Huang, Yuqing Guo, Jianfeng Gao:

M-Walk: Learning to Walk over Graphs using Monte Carlo Tree Search. 6787-6798 - Yitong Li, Michael Murias, Geraldine Dawson, David E. Carlson:

Extracting Relationships by Multi-Domain Matching. 6799-6810 - Corinna Cortes, Vitaly Kuznetsov, Mehryar Mohri, Dmitry Storcheus, Scott Yang:

Efficient Gradient Computation for Structured Output Learning with Rational and Tropical Losses. 6811-6822 - Stanislav Pidhorskyi, Ranya Almohsen, Gianfranco Doretto:

Generative Probabilistic Novelty Detection with Adversarial Autoencoders. 6823-6834 - Maya R. Gupta, Dara Bahri, Andrew Cotter, Kevin Robert Canini:

Diminishing Returns Shape Constraints for Interpretability and Regularization. 6835-6845 - Valerio Perrone, Rodolphe Jenatton, Matthias W. Seeger, Cédric Archambeau:

Scalable Hyperparameter Transfer Learning. 6846-6856 - Shandian Zhe, Yishuai Du:

Stochastic Nonparametric Event-Tensor Decomposition. 6857-6867 - David Eriksson, Kun Dong, Eric Hans Lee, David Bindel, Andrew Gordon Wilson:

Scaling Gaussian Process Regression with Derivatives. 6868-6878 - Jayadev Acharya, Ziteng Sun, Huanyu Zhang:

Differentially Private Testing of Identity and Closeness of Discrete Distributions. 6879-6891 - Nanyang Ye, Zhanxing Zhu:

Bayesian Adversarial Learning. 6892-6901 - Kishan Wimalawarne, Hiroshi Mamitsuka:

Efficient Convex Completion of Coupled Tensors using Coupled Nuclear Norms. 6902-6910 - Jennifer A. Gillenwater, Alex Kulesza, Sergei Vassilvitskii, Zelda E. Mariet:

Maximizing Induced Cardinality Under a Determinantal Point Process. 6911-6920 - Nathan Kallus, Xiaojie Mao, Madeleine Udell:

Causal Inference with Noisy and Missing Covariates via Matrix Factorization. 6921-6932 - Mathieu Fehr, Olivier Buffet, Vincent Thomas, Jilles Steeve Dibangoye:

rho-POMDPs have Lipschitz-Continuous epsilon-Optimal Value Functions. 6933-6943 - Agastya Kalra, Abdullah Rashwan, Wei-Shou Hsu, Pascal Poupart, Prashant Doshi, Georgios Trimponias:

Online Structure Learning for Feed-Forward and Recurrent Sum-Product Networks. 6944-6954 - Stephen Mussmann, Percy Liang:

Uncertainty Sampling is Preconditioned Stochastic Gradient Descent on Zero-One Loss. 6955-6964 - Simon Kohl, Bernardino Romera-Paredes, Clemens Meyer, Jeffrey De Fauw, Joseph R. Ledsam, Klaus H. Maier-Hein, S. M. Ali Eslami, Danilo Jimenez Rezende, Olaf Ronneberger:

A Probabilistic U-Net for Segmentation of Ambiguous Images. 6965-6975 - Ming Pang, Wei Gao, Min Tao, Zhi-Hua Zhou:

Unorganized Malicious Attacks Detection. 6976-6985 - Jovana Mitrovic, Dino Sejdinovic, Yee Whye Teh:

Causal Inference via Kernel Deviance Measures. 6986-6994 - Markus Kaiser, Clemens Otte, Thomas A. Runkler, Carl Henrik Ek:

Bayesian Alignments of Warped Multi-Output Gaussian Processes. 6995-7004 - Yingyezhe Jin, Wenrui Zhang

, Peng Li:
Hybrid Macro/Micro Level Backpropagation for Training Deep Spiking Neural Networks. 7005-7015 - Kush Bhatia, Aldo Pacchiano, Nicolas Flammarion, Peter L. Bartlett, Michael I. Jordan:

Gen-Oja: Simple & Efficient Algorithm for Streaming Generalized Eigenvector Computation. 7016-7025 - Pierre Gaillard, Olivier Wintenberger:

Efficient online algorithms for fast-rate regret bounds under sparsity. 7026-7036 - Alexander A. Alemi, Ian Fischer:

GILBO: One Metric to Measure Them All. 7037-7046 - Andrey Malinin, Mark J. F. Gales:

Predictive Uncertainty Estimation via Prior Networks. 7047-7058 - Wen Sun, Geoffrey J. Gordon, Byron Boots, J. Andrew Bagnell:

Dual Policy Iteration. 7059-7069 - Sabyasachi Shivkumar, Richard D. Lange, Ankani Chattoraj, Ralf M. Haefner:

A probabilistic population code based on neural samples. 7070-7079 - Anirvan M. Sengupta, Cengiz Pehlevan, Mariano Tepper, Alexander Genkin, Dmitri B. Chklovskii:

Manifold-tiling Localized Receptive Fields are Optimal in Similarity-preserving Neural Networks. 7080-7090 - Maziar Sanjabi, Jimmy Ba, Meisam Razaviyayn, Jason D. Lee:

On the Convergence and Robustness of Training GANs with Regularized Optimal Transport. 7091-7101 - Raef Bassily, Abhradeep Guha Thakurta, Om Dipakbhai Thakkar:

Model-Agnostic Private Learning. 7102-7112 - Tengfei Ma, Jie Chen, Cao Xiao:

Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders. 7113-7124 - Sham M. Kakade, Jason D. Lee:

Provably Correct Automatic Sub-Differentiation for Qualified Programs. 7125-7135 - Priyank Jaini, Pascal Poupart, Yaoliang Yu:

Deep Homogeneous Mixture Models: Representation, Separation, and Approximation. 7136-7145 - Grant M. Rotskoff, Eric Vanden-Eijnden:

Parameters as interacting particles: long time convergence and asymptotic error scaling of neural networks. 7146-7155 - Sungryull Sohn, Junhyuk Oh, Honglak Lee:

Hierarchical Reinforcement Learning for Zero-shot Generalization with Subtask Dependencies. 7156-7166 - Kimin Lee, Kibok Lee, Honglak Lee, Jinwoo Shin:

A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks. 7167-7177 - Filipe de Avila Belbute-Peres, Kevin A. Smith, Kelsey R. Allen, Josh Tenenbaum, J. Zico Kolter:

End-to-End Differentiable Physics for Learning and Control. 7178-7189 - Iryna Korshunova, Jonas Degrave, Ferenc Huszar, Yarin Gal, Arthur Gretton, Joni Dambre:

BRUNO: A Deep Recurrent Model for Exchangeable Data. 7190-7198 - Fabian H. Sinz, Alexander S. Ecker, Paul G. Fahey, Edgar Y. Walker, Erick Cobos, Emmanouil Froudarakis, Dimitri Yatsenko, Xaq Pitkow, Jacob Reimer, Andreas S. Tolias:

Stimulus domain transfer in recurrent models for large scale cortical population prediction on video. 7199-7210 - Roei Herzig, Moshiko Raboh, Gal Chechik, Jonathan Berant, Amir Globerson:

Mapping Images to Scene Graphs with Permutation-Invariant Structured Prediction. 7211-7221 - Ilai Bistritz, Amir Leshem:

Distributed Multi-Player Bandits - a Game of Thrones Approach. 7222-7232 - Itay Evron, Edward Moroshko, Koby Crammer:

Efficient Loss-Based Decoding on Graphs for Extreme Classification. 7233-7244 - Amir-Reza Asadi, Emmanuel Abbe, Sergio Verdú:

Chaining Mutual Information and Tightening Generalization Bounds. 7245-7254 - Onur Teymur, Han Cheng Lie, Tim Sullivan, Ben Calderhead:

Implicit Probabilistic Integrators for ODEs. 7255-7264 - Jiechuan Jiang, Zongqing Lu:

Learning Attentional Communication for Multi-Agent Cooperation. 7265-7275 - Tyler B. Johnson, Carlos Guestrin:

Training Deep Models Faster with Robust, Approximate Importance Sampling. 7276-7286 - Yi Qi, Qingyun Wu, Hongning Wang, Jie Tang, Maosong Sun:

Bandit Learning with Implicit Feedback. 7287-7297 - Zichao Yang, Zhiting Hu, Chris Dyer, Eric P. Xing, Taylor Berg-Kirkpatrick:

Unsupervised Text Style Transfer using Language Models as Discriminators. 7298-7309 - Adam Santoro, Ryan Faulkner, David Raposo, Jack W. Rae, Mike Chrzanowski, Theophane Weber, Daan Wierstra, Oriol Vinyals, Razvan Pascanu, Timothy P. Lillicrap:

Relational recurrent neural networks. 7310-7321 - Enayat Ullah, Poorya Mianjy, Teodor Vanislavov Marinov, Raman Arora:

Streaming Kernel PCA with \tilde{O}(\sqrt{n}) Random Features. 7322-7332 - Yu-Shao Peng, Kai-Fu Tang, Hsuan-Tien Lin, Edward Y. Chang:

REFUEL: Exploring Sparse Features in Deep Reinforcement Learning for Fast Disease Diagnosis. 7333-7342 - Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, Sungjin Ahn:

Bayesian Model-Agnostic Meta-Learning. 7343-7353 - Mahyar Khayatkhoei, Maneesh Singh, Ahmed Elgammal:

Disconnected Manifold Learning for Generative Adversarial Networks. 7354-7364 - Yu-An Chung, Wei-Hung Weng, Schrasing Tong, James R. Glass:

Unsupervised Cross-Modal Alignment of Speech and Text Embedding Spaces. 7365-7375 - Victor-Emmanuel Brunel:

Learning Signed Determinantal Point Processes through the Principal Minor Assignment Problem. 7376-7385 - Gabi Shalev, Yossi Adi, Joseph Keshet:

Out-of-Distribution Detection using Multiple Semantic Label Representations. 7386-7396 - Insu Han, Haim Avron, Jinwoo Shin:

Stochastic Chebyshev Gradient Descent for Spectral Optimization. 7397-7407 - Sofiane Dhouib, Ievgen Redko:

Revisiting (\epsilon, \gamma, \tau)-similarity learning for domain adaptation. 7408-7417 - Marina Meila:

How to tell when a clustering is (approximately) correct using convex relaxations. 7418-7429 - Zakaria Mhammedi, Robert C. Williamson:

Constant Regret, Generalized Mixability, and Mirror Descent. 7430-7439 - Wonseok Jeon, Seokin Seo, Kee-Eung Kim:

A Bayesian Approach to Generative Adversarial Imitation Learning. 7440-7450 - Alyson K. Fletcher, Parthe Pandit, Sundeep Rangan, Subrata Sarkar, Philip Schniter:

Plug-in Estimation in High-Dimensional Linear Inverse Problems: A Rigorous Analysis. 7451-7460 - Min Wen, Ufuk Topcu:

Constrained Cross-Entropy Method for Safe Reinforcement Learning. 7461-7471 - Jiaming Song, Hongyu Ren, Dorsa Sadigh, Stefano Ermon:

Multi-Agent Generative Adversarial Imitation Learning. 7472-7483 - Yonatan Gur, Ahmadreza Momeni:

Adaptive Learning with Unknown Information Flows. 7484-7493 - Bryan Lim:

Forecasting Treatment Responses Over Time Using Recurrent Marginal Structural Networks. 7494-7504 - Namrata Anand, Po-Ssu Huang:

Generative modeling for protein structures. 7505-7516 - Marton Havasi, José Miguel Hernández-Lobato, Juan José Murillo-Fuentes:

Inference in Deep Gaussian Processes using Stochastic Gradient Hamiltonian Monte Carlo. 7517-7527 - Xu Lan, Xiatian Zhu, Shaogang Gong:

Knowledge Distillation by On-the-Fly Native Ensemble. 7528-7538 - Yedid Hoshen:

Non-Adversarial Mapping with VAEs. 7539-7548 - Robert Geirhos, Carlos R. Medina Temme, Jonas Rauber, Heiko H. Schütt, Matthias Bethge, Felix A. Wichmann:

Generalisation in humans and deep neural networks. 7549-7561 - Sandeep Subramanian, Sai Rajeswar, Alessandro Sordoni, Adam Trischler, Aaron C. Courville, Chris Pal:

Towards Text Generation with Adversarially Learned Neural Outlines. 7562-7574 - Naman Agarwal, Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, Brendan McMahan:

cpSGD: Communication-efficient and differentially-private distributed SGD. 7575-7586 - Jacob R. Gardner, Geoff Pleiss, Kilian Q. Weinberger, David Bindel, Andrew Gordon Wilson:

GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration. 7587-7597 - Xinyuan Zhang, Yitong Li, Dinghan Shen, Lawrence Carin:

Diffusion Maps for Textual Network Embedding. 7598-7608 - Dustin Tran, Matthew D. Hoffman, Dave Moore, Christopher Suter, Srinivas Vasudevan, Alexey Radul:

Simple, Distributed, and Accelerated Probabilistic Programming. 7609-7620 - Kevin Duarte, Yogesh S. Rawat, Mubarak Shah:

VideoCapsuleNet: A Simplified Network for Action Detection. 7621-7630 - Xuhui Fan, Bin Li, Scott A. Sisson:

Rectangular Bounding Process. 7631-7641 - Huy L. Nguyen, Lydia Zakynthinou:

Improved Algorithms for Collaborative PAC Learning. 7642-7650 - Nan Rosemary Ke, Anirudh Goyal, Olexa Bilaniuk, Jonathan Binas, Michael C. Mozer, Chris Pal, Yoshua Bengio:

Sparse Attentive Backtracking: Temporal Credit Assignment Through Reminding. 7651-7662 - Hanlin Tang, Shaoduo Gan, Ce Zhang, Tong Zhang, Ji Liu:

Communication Compression for Decentralized Training. 7663-7673 - Noam Brown, Tuomas Sandholm, Brandon Amos:

Depth-Limited Solving for Imperfect-Information Games. 7674-7685 - Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, Kailash Gopalakrishnan:

Training Deep Neural Networks with 8-bit Floating Point Numbers. 7686-7695 - Georgios Theocharous, Zheng Wen, Yasin Abbasi, Nikos Vlassis:

Scalar Posterior Sampling with Applications. 7696-7704 - Johan Bjorck, Carla P. Gomes, Bart Selman, Kilian Q. Weinberger:

Understanding Batch Normalization. 7705-7716 - Rakshith Shetty, Mario Fritz, Bernt Schiele

:
Adversarial Scene Editing: Automatic Object Removal from Weak Supervision. 7717-7727 - Guanhong Tao, Shiqing Ma, Yingqi Liu, Xiangyu Zhang:

Attacks Meet Interpretability: Attribute-steered Detection of Adversarial Samples. 7728-7739 - Pierre Baldi, Roman Vershynin:

On Neuronal Capacity. 7740-7749 - Sebastian Flennerhag, Hujun Yin, John A. Keane, Mark J. Elliot:

Breaking the Activation Function Bottleneck through Adaptive Parameterization. 7750-7761 - Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, Le Song:

Learning Loop Invariants for Program Verification. 7762-7773 - Bruno Korbar, Du Tran, Lorenzo Torresani:

Cooperative Learning of Audio and Video Models from Self-Supervised Synchronization. 7774-7785 - David Alvarez-Melis, Tommi S. Jaakkola:

Towards Robust Interpretability with Self-Explaining Neural Networks. 7786-7795 - Syama Sundar Rangapuram, Matthias W. Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang Wang, Tim Januschowski:

Deep State Space Models for Time Series Forecasting. 7796-7805 - Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, Alexander L. Gaunt:

Constrained Graph Variational Autoencoders for Molecule Design. 7806-7815 - Kevin Ellis, Lucas Morales, Mathias Sablé-Meyer, Armando Solar-Lezama

, Josh Tenenbaum:
Learning Libraries of Subroutines for Neurally-Guided Bayesian Program Induction. 7816-7826 - Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, Tie-Yan Liu:

Neural Architecture Optimization. 7827-7838 - Yao-Xiang Ding, Zhi-Hua Zhou:

Preference Based Adaptation for Learning Objectives. 7839-7848 - Shi Li, Xiangyu Guo:

Distributed k-Clustering for Data with Heavy Noise. 7849-7857 - Holden Lee, Andrej Risteski, Rong Ge:

Beyond Log-concavity: Provable Guarantees for Sampling Multi-modal Distributions using Simulated Tempering Langevin Monte Carlo. 7858-7867 - Joseph Marino, Milan Cvitkovic, Yisong Yue:

A General Method for Amortizing Variational Filtering. 7868-7879 - Matteo Almanza, Flavio Chierichetti, Alessandro Panconesi, Andrea Vattani:

A Reduction for Efficient LDA Topic Reconstruction. 7880-7890 - Dominik Linzner, Heinz Koeppl:

Cluster Variational Approximations for Structure Learning of Continuous-Time Bayesian Networks from Incomplete Data. 7891-7901 - Thu Nguyen-Phuoc, Chuan Li, Stephen Balaban, Yong-Liang Yang:

RenderNet: A deep convolutional network for differentiable rendering from 3D shapes. 7902-7912 - Rui Gao, Liyan Xie, Yao Xie, Huan Xu:

Robust Hypothesis Testing Using Wasserstein Uncertainty Sets. 7913-7923 - Zhihao Zheng, Pengyu Hong:

Robust Detection of Adversarial Attacks by Modeling the Intrinsic Properties of Deep Neural Networks. 7924-7933 - Jongmin Lee, Geon-hyeong Kim, Pascal Poupart, Kee-Eung Kim:

Monte-Carlo Tree Search for Constrained POMDPs. 7934-7943 - Jacob Harer, Onur Ozdemir, Tomo Lazovich, Christopher P. Reale, Rebecca L. Russell, Louis Y. Kim, Peter Chin:

Learning to Repair Software Vulnerabilities with Generative Adversarial Networks. 7944-7954 - Tianyu He, Xu Tan, Yingce Xia, Di He, Tao Qin, Zhibo Chen, Tie-Yan Liu:

Layer-Wise Coordination between Encoder and Decoder for Neural Machine Translation. 7955-7965 - He Zhao, Lan Du, Wray L. Buntine, Mingyuan Zhou:

Dirichlet belief networks for topic structure learning. 7966-7977 - Jianfei Chen, Jun Zhu, Yee Whye Teh, Tong Zhang:

Stochastic Expectation Maximization with Variance Reduction. 7978-7988 - Wenruo Bai, William Stafford Noble, Jeff A. Bilmes:

Submodular Maximization via Gradient Ascent: The Case of Deep Submodular Functions. 7989-7999 - Sander Dieleman, Aäron van den Oord, Karen Simonyan:

The challenge of realistic music generation: modelling raw audio at scale. 8000-8010 - Brandon Tran, Jerry Li, Aleksander Madry:

Spectral Signatures in Backdoor Attacks. 8011-8021 - Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, Dario Amodei:

Reward learning from human preferences and demonstrations in Atari. 8022-8034 - Tal Friedman, Guy Van den Broeck:

Approximate Knowledge Compilation by Online Collapsed Importance Sampling. 8035-8045 - Andrew Trask, Felix Hill, Scott E. Reed, Jack W. Rae, Chris Dyer, Phil Blunsom:

Neural Arithmetic Logic Units. 8046-8055 - Youjie Li, Mingchao Yu, Songze Li, Salman Avestimehr, Nam Sung Kim, Alexander G. Schwing:

Pipe-SGD: A Decentralized Pipelined SGD Framework for Distributed Deep Net Training. 8056-8067 - Xundong Wu, Xiangwen Liu, Wei Li, Qing Wu:

Improved Expressivity Through Dendritic Neural Networks. 8068-8079 - Vatsal Sharan, Parikshit Gopalan, Udi Wieder:

Efficient Anomaly Detection via Matrix Sketching. 8080-8091 - Jonghwan Mun, Kimin Lee, Jinwoo Shin, Bohyung Han:

Learning to Specialize with Knowledge Distillation for Visual Question Answering. 8092-8102 - Yinlam Chow, Ofir Nachum, Edgar A. Duéñez-Guzmán, Mohammad Ghavamzadeh:

A Lyapunov-based Approach to Safe Reinforcement Learning. 8103-8112 - Duc Thien Nguyen, Akshat Kumar, Hoong Chuin Lau:

Credit Assignment For Collective Multiagent RL With Global Rewards. 8113-8124 - Loucas Pillaud-Vivien, Alessandro Rudi, Francis R. Bach:

Statistical Optimality of Stochastic Gradient Descent on Hard Learning Problems through Multiple Passes. 8125-8135 - Zachary C. Lipton, Julian J. McAuley, Alexandra Chouldechova:

Does mitigating ML's impact disparity require treatment disparity? 8136-8146 - Debarun Bhattacharjya, Dharmashankar Subramanian, Tian Gao:

Proximal Graphical Event Models. 8147-8156 - Mahdi Imani, Seyede Fatemeh Ghoreishi, Ulisses M. Braga-Neto:

Bayesian Control of Large MDPs with Unknown Dynamics in Data-Poor Environments. 8157-8167 - Yuanzhi Li, Yingyu Liang:

Learning Overparameterized Neural Networks via Stochastic Gradient Descent on Structured Data. 8168-8177 - Anthony L. Caterini, Arnaud Doucet, Dino Sejdinovic:

Hamiltonian Variational Auto-Encoder. 8178-8188 - James Thewlis, Hakan Bilen

, Andrea Vedaldi:
Modelling and unsupervised learning of symmetric deformable object categories. 8189-8200 - Fredrik Lindsten, Jouni Helske, Matti Vihola:

Graphical model inference: Sequential Monte Carlo meets deterministic approximations. 8201-8211 - Jonathan Kadmon, Surya Ganguli:

Statistical mechanics of low-rank tensor decomposition. 8212-8222 - Luigi Acerbi:

Variational Bayesian Monte Carlo. 8223-8233 - Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, Honglak Lee:

Sample-Efficient Reinforcement Learning with Stochastic Ensemble Value Expansion. 8234-8244 - Haipeng Luo, Chen-Yu Wei, Kai Zheng:

Efficient Online Portfolio with Logarithmic Regret. 8245-8255 - Judy Hoffman

, Mehryar Mohri, Ningshan Zhang:
Algorithms and Theory for Multiple-Source Adaptation. 8256-8266 - Claudio Gentile, Nikos Parotsidis, Fabio Vitale:

Online Reciprocal Recommendation with Theoretical Performance Guarantees. 8267-8277 - Nicolas Brosse, Alain Durmus, Eric Moulines:

The promises and pitfalls of Stochastic Gradient Langevin Dynamics. 8278-8288 - Lei Wu, Chao Ma, Weinan E:

How SGD Selects the Global Minima in Over-parameterized Learning: A Dynamical Stability Perspective. 8289-8298 - Brandon Amos, Ivan Dario Jimenez Rodriguez, Jacob Sacks, Byron Boots, J. Zico Kolter:

Differentiable MPC for End-to-end Planning and Control. 8299-8310 - Jordan Frécon, Saverio Salzo, Massimiliano Pontil:

Bilevel learning of the Group Lasso structure. 8311-8321 - Yang Song, Rui Shu, Nate Kushman, Stefano Ermon:

Constructing Unrestricted Adversarial Examples with Generative Models. 8322-8333 - Chuyang Ke, Jean Honorio:

Information-theoretic Limits for Community Detection in Network Models. 8334-8343 - Will Norcliffe-Brown, Stathis Vafeias, Sarah Parisot:

Learning Conditioned Graph Structures for Interpretable Visual Question Answering. 8344-8353 - Rizal Fathony, Ashkan Rezaei, Mohammad Ali Bashiri, Xinhua Zhang, Brian D. Ziebart:

Distributionally Robust Graphical Models. 8354-8365 - Catherine Wong, Neil Houlsby, Yifeng Lu, Andrea Gesmundo:

Transfer Learning with Neural AutoML. 8366-8375 - Conghui Tan, Tong Zhang, Shiqian Ma, Ji Liu:

Stochastic Primal-Dual Method for Empirical Risk Minimization with O(1) Per-Iteration Complexity. 8376-8385 - Avrim Blum, Suriya Gunasekar, Thodoris Lykouris, Nati Srebro:

On preserving non-discrimination when combining expert advice. 8386-8397 - Nick Haber, Damian Mrowca, Stephanie Wang, Li Fei-Fei, Daniel L. K. Yamins:

Learning to Play With Intrinsically-Motivated, Self-Aware Agents. 8398-8409 - Eric Wong, Frank R. Schmidt, Jan Hendrik Metzen, J. Zico Kolter:

Scaling provable adversarial defenses. 8410-8419 - Andrei Zanfir, Elisabeta Marinoiu, Mihai Zanfir, Alin-Ionut Popa, Cristian Sminchisescu:

Deep Network for the Integrated 3D Sensing of Multiple People in Natural Images. 8420-8429 - Han Shao, Xiaotian Yu, Irwin King, Michael R. Lyu:

Almost Optimal Algorithms for Linear Stochastic Bandits with Heavy-Tailed Payoffs. 8430-8439 - Gintare Karolina Dziugaite, Daniel M. Roy:

Data-dependent PAC-Bayes priors via differential privacy. 8440-8450 - Dandan Guo, Bo Chen, Hao Zhang, Mingyuan Zhou:

Deep Poisson gamma dynamical systems. 8451-8461 - Kry Yik Chau Lui, Gavin Weiguang Ding, Ruitong Huang, Robert J. McCann:

Dimensionality Reduction has Quantifiable Imperfections: Two Geometric Bounds. 8462-8472 - Luis Haug, Sebastian Tschiatschek, Adish Singla

:
Teaching Inverse Reinforcement Learners via Features and Demonstrations. 8473-8482 - Soroosh Shafieezadeh-Abadeh, Viet Anh Nguyen, Daniel Kuhn, Peyman Mohajerin Esfahani:

Wasserstein Distributionally Robust Kalman Filtering. 8483-8492 - James C. R. Whittington, Timothy H. Muller, Shirely Mark, Caswell Barry, Tim E. J. Behrens:

Generalisation of structural knowledge in the hippocampal-entorhinal system. 8493-8504 - Blake E. Woodworth, Jialei Wang, Adam D. Smith, Brendan McMahan, Nati Srebro:

Graph Oracle Models, Lower Bounds, and Gaps for Parallel Stochastic Optimization. 8505-8515 - Sebastian Lunz, Carola Schönlieb, Ozan Öktem:

Adversarial Regularizers in Inverse Problems. 8516-8525 - Vincent Cohen-Addad, Varun Kanade, Frederik Mallmann-Trenn:

Clustering Redemption-Beyond the Impossibility of Kleinberg's Axioms. 8526-8535 - Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor W. Tsang

, Masashi Sugiyama:
Co-teaching: Robust training of deep neural networks with extremely noisy labels. 8536-8546 - Justin Fu, Avi Singh, Dibya Ghosh, Larry Yang, Sergey Levine:

Variational Inverse Control with Events: A General Framework for Data-Driven Reward Definition. 8547-8556 - Alireza Aghasi, Ali Ahmed, Paul Hand, Babhru Joshi:

A convex program for bilinear inversion of sparse vectors. 8557-8567 - Han Zhao, Shanghang Zhang, Guanhang Wu, José M. F. Moura, João Paulo Costeira, Geoffrey J. Gordon:

Adversarial Multiple Source Domain Adaptation. 8568-8579 - Arthur Jacot, Clément Hongler, Franck Gabriel:

Neural Tangent Kernel: Convergence and Generalization in Neural Networks. 8580-8589 - Yash Deshpande, Subhabrata Sen, Andrea Montanari, Elchanan Mossel:

Contextual Stochastic Block Models. 8590-8602 - Jeffrey Chan, Valerio Perrone, Jeffrey P. Spence, Paul A. Jenkins, Sara Mathieson, Yun S. Song:

A Likelihood-Free Inference Framework for Population Genetic Data using Exchangeable Neural Networks. 8603-8614 - Adam R. Kosiorek, Hyunjik Kim, Yee Whye Teh, Ingmar Posner:

Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects. 8615-8625 - Ian Osband, John Aslanides, Albin Cassirer:

Randomized Prior Functions for Deep Reinforcement Learning. 8626-8638 - Craig S. Greenberg, Nicholas Monath, Ari Kobren, Patrick Flaherty, Andrew McGregor, Andrew McCallum:

Compact Representation of Uncertainty in Clustering. 8639-8649 - Fariborz Salehi, Ehsan Abbasi, Babak Hassibi:

Learning without the Phase: Regularized PhaseMax Achieves Optimal Sample Complexity. 8655-8666 - Michelle Yuan, Benjamin Van Durme, Jordan L. Ying:

Multilingual Anchoring: Interactive Topic Modeling and Alignment Across Languages. 8667-8677 - Arman Rahimzamani, Himanshu Asnani, Pramod Viswanath, Sreeram Kannan:

Estimators for Multivariate Information Measures in General Probability Spaces. 8678-8689 - Yang Young Lu, Yingying Fan, Jinchi Lv, William Stafford Noble:

DeepPINK: reproducible feature selection in deep neural networks. 8690-8700 - Lazar Valkov, Dipak Chaudhari, Akash Srivastava, Charles Sutton, Swarat Chaudhuri:

HOUDINI: Lifelong Learning as Program Synthesis. 8701-8712 - Liang-Chieh Chen, Maxwell D. Collins, Yukun Zhu, George Papandreou, Barret Zoph, Florian Schroff, Hartwig Adam, Jonathon Shlens:

Searching for Efficient Multi-Scale Architectures for Dense Image Prediction. 8713-8724 - Hugh Salimbeni, Ching-An Cheng, Byron Boots, Marc Peter Deisenroth:

Orthogonally Decoupled Variational Gaussian Processes. 8725-8734 - João Sacramento, Rui Ponte Costa, Yoshua Bengio, Walter Senn:

Dendritic cortical microcircuits approximate the backpropagation algorithm. 8735-8746 - Thanard Kurutach, Aviv Tamar, Ge Yang, Stuart J. Russell, Pieter Abbeel:

Learning Plannable Representations with Causal InfoGAN. 8747-8758 - Dylan J. Foster, Ayush Sekhari, Karthik Sridharan:

Uniform Convergence of Gradients for Non-Convex Learning and Optimization. 8759-8770 - Bart van Merrienboer, Olivier Breuleux, Arnaud Bergeron, Pascal Lamblin:

Automatic differentiation in ML: Where we are and where we should be going. 8771-8781 - Diana Cai, Michael Mitzenmacher, Ryan P. Adams:

A Bayesian Nonparametric View on Count-Min Sketch. 8782-8791 - Zhilu Zhang, Mert R. Sabuncu:

Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels. 8792-8802 - Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P. Vetrov, Andrew Gordon Wilson:

Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs. 8803-8812 - Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li Fei-Fei, Josh Tenenbaum, Daniel L. K. Yamins:

Flexible neural representation for physics prediction. 8813-8824 - Mahito Sugiyama, Hiroyuki Nakahara, Koji Tsuda:

Legendre Decomposition for Tensors. 8825-8835 - Cezary Kaliszyk, Josef Urban, Henryk Michalewski, Miroslav Olsák:

Reinforcement Learning of Theorem Proving. 8836-8847 - Yi Hao, Alon Orlitsky, Ananda Theertha Suresh, Yihong Wu:

Data Amplification: A Unified and Competitive Approach to Property Estimation. 8848-8857 - Jan Eric Lenssen, Matthias Fey, Pascal Libuschewski:

Group Equivariant Capsule Networks. 8858-8867 - Qiang Liu, Dilin Wang:

Stein Variational Gradient Descent as Moment Matching. 8868-8877 - Rachel Cummings, Sara Krehbiel, Kevin A. Lai, Uthaipon Tao Tantipongpipat:

Differential Privacy for Growing Databases. 8878-8887 - Jungseul Ok, Alexandre Proutière, Damianos Tranos:

Exploration in Structured Reinforcement Learning. 8888-8896 - Rudrasis Chakraborty, Chun-Hao Yang, Xingjian Zhen, Monami Banerjee, Derek B. Archer, David E. Vaillancourt, Vikas Singh, Baba C. Vemuri:

A Statistical Recurrent Model on the Manifold of Symmetric Positive Definite Matrices. 8897-8908 - Nathan Kallus:

Balanced Policy Evaluation and Learning. 8909-8920 - Rasul Tutunov, Dongho Kim, Haitham Bou-Ammar:

Distributed Multitask Reinforcement Learning with Quadratic Convergence. 8921-8930 - Richard Shin, Illia Polosukhin, Dawn Song:

Improving Neural Program Synthesis with Inferred Execution Traces. 8931-8940 - Jung-Su Ha, Young-Jin Park, Hyeok-Joo Chae, Soon-Seo Park, Han-Lim Choi:

Adaptive Path-Integral Autoencoders: Representation Learning and Planning for Dynamical Systems. 8941-8952 - Andrea Tirinzoni, Marek Petrik, Xiangli Chen, Brian D. Ziebart:

Policy-Conditioned Uncertainty Sets for Robust Markov Decision Processes. 8953-8963 - Zhilin Yang, Junbo Jake Zhao, Bhuwan Dhingra, Kaiming He, William W. Cohen, Ruslan Salakhutdinov, Yann LeCun:

GLoMo: Unsupervised Learning of Transferable Relational Graphs. 8964-8975 - Scott Aaronson, Xinyi Chen, Elad Hazan, Satyen Kale, Ashwin Nayak:

Online Learning of Quantum States. 8976-8986 - Asad Haris, Ali Shojaie, Noah Simon:

Wavelet regression and additive models for irregularly spaced data. 8987-8997 - Rico Angell, Daniel Sheldon:

Inferring Latent Velocities from Weather Radar Data using Gaussian Processes. 8998-9007 - Anna Korba, Alexandre Garcia, Florence d'Alché-Buc:

A Structured Prediction Approach for Label Ranking. 9008-9018 - Mojmir Mutny, Andreas Krause:

Efficient High Dimensional Bayesian Optimization with Additivity and Quadrature Fourier Features. 9019-9030 - Aditya Kusupati, Manish Singh, Kush Bhatia, Ashish Kumar, Prateek Jain, Manik Varma:

FastGRNN: A Fast, Accurate, Stable and Tiny Kilobyte Sized Gated Recurrent Neural Network. 9031-9042 - Matthew MacKay, Paul Vicol, Jimmy Ba, Roger B. Grosse:

Reversible Recurrent Neural Networks. 9043-9054 - Alexandre Défossez, Neil Zeghidour, Nicolas Usunier, Léon Bottou, Francis R. Bach:

SING: Symbol-to-Instrument Neural Generator. 9055-9065 - Anna T. Thomas, Albert Gu, Tri Dao, Atri Rudra, Christopher Ré:

Learning Compressed Transforms with Low Displacement Rank. 9066-9078 - Xiaohan Chen, Jialin Liu, Zhangyang Wang, Wotao Yin:

Theoretical Linear Convergence of Unfolded ISTA and Its Practical Weights and Thresholds. 9079-9089 - Amir-massoud Farahmand:

Iterative Value-Aware Model Learning. 9090-9101 - Daniel Moyer, Shuyang Gao, Rob Brekelmans, Aram Galstyan, Greg Ver Steeg:

Invariant Representations without Adversarial Training. 9102-9111 - Abhinav Gupta, Adithyavairavan Murali, Dhiraj Gandhi, Lerrel Pinto:

Robot Learning in Homes: Improving Generalization and Reducing Dataset Bias. 9112-9122 - Jessie Huang, Fa Wu, Doina Precup, Yang Cai

:
Learning Safe Policies with Expert Guidance. 9123-9132 - Ehsan Hajiramezanali, Siamak Zamani Dadaneh, Alireza Karbalayghareh, Mingyuan Zhou, Xiaoning Qian:

Bayesian multi-domain learning for cancer subtype discovery from next-generation sequencing count data. 9133-9142 - Vikas K. Garg, Ofer Dekel, Lin Xiao:

Learning SMaLL Predictors. 9143-9153 - Paul Hand, Oscar Leong, Vladislav Voroninski:

Phase Retrieval Under a Generative Prior. 9154-9164 - Marina Munkhoeva, Yermek Kapushev, Evgeny Burnaev, Ivan V. Oseledets:

Quadrature-based features for kernel approximation. 9165-9174 - Akshay Raj Dhamija, Manuel Günther, Terrance E. Boult:

Reducing Network Agnostophobia. 9175-9186 - Gianluca Detommaso, Tiangang Cui, Youssef M. Marzouk, Alessio Spantini, Robert Scheichl:

A Stein variational Newton method. 9187-9197 - Sami Abu-El-Haija, Bryan Perozzi, Rami Al-Rfou, Alexander A. Alemi:

Watch Your Step: Learning Node Embeddings via Graph Attention. 9198-9208 - Ashvin Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, Sergey Levine:

Visual Reinforcement Learning with Imagined Goals. 9209-9220 - Kuan Han, Haiguang Wen, Yizhen Zhang, Di Fu, Eugenio Culurciello, Zhongming Liu:

Deep Predictive Coding Network with Local Recurrent Processing for Object Recognition. 9221-9233 - Omar Rivasplata, Csaba Szepesvári, John Shawe-Taylor, Emilio Parrado-Hernández, Shiliang Sun:

PAC-Bayes bounds for stable algorithms with instance-dependent priors. 9234-9244 - Yin Li, Abhinav Gupta:

Beyond Grids: Learning Graph Representations for Visual Recognition. 9245-9255 - Constantinos Daskalakis, Ioannis Panageas:

The Limit Points of (Optimistic) Gradient Descent in Min-Max Optimization. 9256-9266 - Farnood Salehi, Patrick Thiran, L. Elisa Celis:

Coordinate Descent with Bandit Sampling. 9267-9277 - Jeremy Morton, Antony Jameson, Mykel J. Kochenderfer, Freddie D. Witherden:

Deep Dynamical Modeling and Control of Unsteady Fluid Flows. 9278-9288 - Nathan Kallus, Angela Zhou:

Confounding-Robust Policy Improvement. 9289-9299 - Bradly C. Stadie, Ge Yang, Rein Houthooft, Xi Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel, Ilya Sutskever:

The Importance of Sampling inMeta-Reinforcement Learning. 9300-9310 - Chih-Kuan Yeh, Joon Sik Kim, Ian En-Hsu Yen, Pradeep Ravikumar:

Representer Point Selection for Explaining Deep Neural Networks. 9311-9321 - Lingjiao Chen, Hongyi Wang, Jinman Zhao, Dimitris S. Papailiopoulos, Paraschos Koutris:

The Effect of Network Width on the Performance of Large-batch Training. 9322-9332 - Bharat Singh, Mahyar Najibi, Larry S. Davis:

SNIPER: Efficient Multi-Scale Training. 9333-9343 - Chen Dan, Liu Leqi, Bryon Aragam, Pradeep Ravikumar, Eric P. Xing:

The Sample Complexity of Semi-Supervised Learning with Nonparametric Mixture Models. 9344-9354 - Tao Chen, Adithyavairavan Murali, Abhinav Gupta:

Hardware Conditioned Policies for Multi-Robot Transfer Learning. 9355-9366 - Abhishek Kumar, Prasanna Sattigeri, Kahini Wadhawan, Leonid Karlinsky, Rogério Schmidt Feris, Bill Freeman, Gregory W. Wornell:

Co-regularized Alignment for Unsupervised Domain Adaptation. 9367-9378 - Daniele Calandriello, Lorenzo Rosasco:

Statistical and Computational Trade-Offs in Kernel K-Means. 9379-9389 - Sergey Bartunov, Adam Santoro, Blake A. Richards, Luke Marris, Geoffrey E. Hinton, Timothy P. Lillicrap:

Assessing the Scalability of Biologically-Motivated Deep Learning Algorithms and Architectures. 9390-9400 - Yan Wu, Gregory Wayne, Karol Gregor, Timothy P. Lillicrap:

Learning Attractor Dynamics for Generative Memory. 9401-9410 - Samuel A. Ocko, Jack Lindsey, Surya Ganguli, Stéphane Deny:

The emergence of multiple retinal cell types through efficient coding of natural movies. 9411-9422 - Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Andrea Vedaldi:

Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks. 9423-9433 - Zi Yin, Vin Sachidananda, Balaji Prabhakar:

The Global Anchor Method for Quantifying Linguistic Shifts and Domain Adaptation. 9434-9445 - Eli Sherman, Ilya Shpitser:

Identification and Estimation of Causal Effects from Dependent Data. 9446-9457 - Hyeji Kim, Yihan Jiang, Sreeram Kannan, Sewoong Oh, Pramod Viswanath:

Deepcode: Feedback Codes via Deep Learning. 9458-9468 - Jayadev Acharya, Arnab Bhattacharyya, Constantinos Daskalakis, Saravanan Kandasamy:

Learning and Testing Causal Models with Interventions. 9469-9481 - Suriya Gunasekar, Jason D. Lee, Daniel Soudry, Nati Srebro:

Implicit Bias of Gradient Descent on Linear Convolutional Networks. 9482-9491 - Xun Zheng, Bryon Aragam, Pradeep Ravikumar, Eric P. Xing:

DAGs with NO TEARS: Continuous Optimization for Structure Learning. 9492-9503 - Tin D. Nguyen, Samory Kpotufe:

PAC-Bayes Tree: weighted subtrees with guarantees. 9504-9512 - Rajan Udwani:

Multi-objective Maximization of Monotone Submodular Functions with Cardinality Constraint. 9513-9524 - Julius Adebayo, Justin Gilmer, Michael Muelly, Ian J. Goodfellow, Moritz Hardt, Been Kim:

Sanity Checks for Saliency Maps. 9525-9536 - Chelsea Finn, Kelvin Xu, Sergey Levine:

Probabilistic Model-Agnostic Meta-Learning. 9537-9548 - Michael Gimelfarb, Scott Sanner, Chi-Guhn Lee:

Reinforcement Learning with Multiple Experts: A Bayesian Model Combination Approach. 9549-9559 - Oana-Maria Camburu, Tim Rocktäschel, Thomas Lukasiewicz, Phil Blunsom:

e-SNLI: Natural Language Inference with Natural Language Explanations. 9560-9572 - Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, Pascal Vincent:

Fast Approximate Natural Gradient Descent in a Kronecker Factored Eigenbasis. 9573-9583 - Jack Umenberger, Thomas B. Schön:

Learning convex bounds for linear quadratic control policy synthesis. 9584-9595 - Morteza Mardani, Qingyun Sun, David L. Donoho, Vardan Papyan, Hatef Monajemi, Shreyas Vasanawala, John M. Pauly:

Neural Proximal Gradient Descent for Compressive Imaging. 9596-9606 - Liwei Wang, Lunjia Hu, Jiayuan Gu, Zhiqiang Hu, Yue Wu, Kun He, John E. Hopcroft:

Towards Understanding Learning Representations: To What Extent Do Different Neural Networks Learn the Same Representation. 9607-9616 - Rad Niazadeh, Tim Roughgarden, Joshua R. Wang:

Optimal Algorithms for Continuous Non-monotone Submodular and DR-Submodular Maximization. 9617-9627 - Rosanne Liu, Joel Lehman, Piero Molino, Felipe Petroski Such, Eric Frank, Alex Sergeev, Jason Yosinski:

An intriguing failing of convolutional neural networks and the CoordConv solution. 9628-9639 - Andrea Tacchetti, Stephen Voinea, Georgios Evangelopoulos:

Trading robust representations for sample complexity through self-supervised visual experience. 9640-9650 - Fangchang Ma, Ulas Ayaz, Sertac Karaman:

Invertibility of Convolutional Generative Networks from Partial Measurements. 9651-9660 - Gabriele Farina, Andrea Celli, Nicola Gatti, Tuomas Sandholm:

Ex ante coordination and collusion in zero-sum multi-player extensive-form games. 9661-9671 - Hoi-To Wai, Zhuoran Yang, Zhaoran Wang, Mingyi Hong:

Multi-Agent Reinforcement Learning via Double Averaging Primal-Dual Optimization. 9672-9683 - Manish Purohit, Zoya Svitkina, Ravi Kumar:

Improving Online Algorithms via ML Predictions. 9684-9693 - Murat A. Erdogdu, Lester Mackey, Ohad Shamir:

Global Non-convex Optimization with Discretized Diffusions. 9694-9703 - Raaz Dwivedi, Nhat Ho, Koulik Khamaru, Martin J. Wainwright, Michael I. Jordan:

Theoretical guarantees for EM under misspecified Gaussian mixture models. 9704-9712 - Bo Dai, Hanjun Dai, Niao He, Weiyang Liu, Zhen Liu, Jianshu Chen, Lin Xiao, Le Song:

Coupled Variational Bayes via Optimization Embedding. 9713-9723 - Chin-Wei Huang, Shawn Tan, Alexandre Lacoste, Aaron C. Courville:

Improving Explorability in Variational Inference with Annealed Variational Objectives. 9724-9734 - Yuntian Deng, Yoon Kim, Justin T. Chiu, Demi Guo, Alexander M. Rush

:
Latent Alignment and Variational Attention. 9735-9747 - Raymond Li, Samira Ebrahimi Kahou, Hannes Schulz, Vincent Michalski, Laurent Charlin, Chris Pal:

Towards Deep Conversational Recommendations. 9748-9758 - Joel Ruben Antony Moniz, Christopher Beckham, Simon Rajotte, Sina Honari, Chris Pal:

Unsupervised Depth Estimation, 3D Face Rotation and Replacement. 9759-9769 - Vitaly Feldman, Jan Vondrák:

Generalization Bounds for Uniformly Stable Algorithms. 9770-9780 - Izhak Golan, Ran El-Yaniv:

Deep Anomaly Detection Using Geometric Transformations. 9781-9791 - Théo Lacombe, Marco Cuturi, Steve Oudot:

Large Scale computation of Means and Clusters for Persistence Diagrams using Optimal Transport. 9792-9802 - Yanjun Han, Jiantao Jiao, Chuan-Zheng Lee, Tsachy Weissman, Yihong Wu, Tiancheng Yu:

Entropy Rate Estimation for Markov Chains with Large State Space. 9803-9814 - Manzil Zaheer, Sashank J. Reddi, Devendra Singh Sachan, Satyen Kale, Sanjiv Kumar:

Adaptive Methods for Nonconvex Optimization. 9815-9825 - Guangxiang Zhu, Zhiao Huang, Chongjie Zhang:

Object-Oriented Dynamics Predictor. 9826-9837 - Alexander Neitz, Giambattista Parascandolo, Stefan Bauer, Bernhard Schölkopf:

Adaptive Skip Intervals: Temporal Abstraction for Recurrent Dynamical Models. 9838-9848 - Matthew O'Kelly, Aman Sinha, Hongseok Namkoong, Russ Tedrake, John C. Duchi:

Scalable End-to-End Autonomous Vehicle Testing via Rare-event Simulation. 9849-9860 - MohammadReza Nazari, Afshin Oroojlooy, Lawrence V. Snyder, Martin Takác:

Reinforcement Learning for Solving the Vehicle Routing Problem. 9861-9871 - Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles, Dimitris S. Papailiopoulos, Stephen J. Wright:

ATOMO: Communication-efficient Learning via Atomic Sparsification. 9872-9883 - Elahe Ghalebi, Baharan Mirzasoleiman, Radu Grosu, Jure Leskovec:

Dynamic Network Model from Partial Observations. 9884-9894 - Alessandro Achille, Tom Eccles, Loïc Matthey, Christopher P. Burgess, Nicholas Watters, Alexander Lerchner, Irina Higgins:

Life-Long Disentangled Representation Learning with Cross-Domain Latent Homologies. 9895-9905 - James T. Wilson, Frank Hutter, Marc Peter Deisenroth:

Maximizing acquisition functions for Bayesian optimization. 9906-9917 - Tao Sun, Yuejiao Sun, Wotao Yin:

On Markov Chain Gradient Descent. 9918-9927 - Ellango Jothimurugesan, Ashraf Tahmasbi, Phillip B. Gibbons, Srikanta Tirthapura:

Variance-Reduced Stochastic Gradient Descent on Streaming Data. 9928-9937 - Aaron J. Havens, Zhanhong Jiang, Soumik Sarkar:

Online Robust Policy Learning in the Presence of Unknown Adversaries. 9938-9948 - Ikko Yamane, Florian Yger, Jamal Atif, Masashi Sugiyama:

Uplift Modeling from Separate Labels. 9949-9959 - Mark van der Wilk, Matthias Bauer, S. T. John, James Hensman:

Learning Invariances using the Marginal Likelihood. 9960-9970 - Tyler Lu, Dale Schuurmans, Craig Boutilier:

Non-delusional Q-learning and value-iteration. 9971-9981 - Tomas Geffner, Justin Domke:

Using Large Ensembles of Control Variates for Variational Inference. 9982-9992 - Yuanxiang Gao, Li Chen, Baochun Li:

Post: Device Placement with Cross-Entropy Minimization and Proximal Policy Optimization. 9993-10002 - Imanol Schlag, Jürgen Schmidhuber:

Learning to Reason with Third Order Tensor Products. 10003-10014 - Chen Liang, Mohammad Norouzi, Jonathan Berant, Quoc V. Le, Ni Lao:

Memory Augmented Policy Optimization for Program Synthesis and Semantic Parsing. 10015-10027 - Tam Le, Makoto Yamada:

Persistence Fisher Kernel: A Riemannian Manifold Kernel for Persistence Diagrams. 10028-10039 - Sercan Ömer Arik, Jitong Chen, Kainan Peng, Wei Ping, Yanqi Zhou:

Neural Voice Cloning with a Few Samples. 10040-10050 - Ali Ahmed, Alireza Aghasi, Paul Hand:

Blind Deconvolutional Phase Retrieval via Convex Programming. 10051-10061 - Imtiaz Masud Ziko, Eric Granger, Ismail Ben Ayed:

Scalable Laplacian K-modes. 10062-10072 - Tatsunori B. Hashimoto, Kelvin Guu, Yonatan Oren, Percy Liang:

A Retrieve-and-Edit Framework for Predicting Structured Outputs. 10073-10083 - Alistair Stewart, Ilias Diakonikolas, Clément L. Canonne:

Testing for Families of Distributions via the Fourier Transform. 10084-10095 - Mitali Bafna, Jack Murtagh, Nikhil Vyas:

Thwarting Adversarial Examples: An L_0-Robust Sparse Fourier Transform. 10096-10106 - Mitchell Stern, Noam Shazeer, Jakob Uszkoreit:

Blockwise Parallel Decoding for Deep Autoregressive Models. 10107-10116 - Osman Asif Malik, Stephen Becker:

Low-Rank Tucker Decomposition of Large Tensors Using TensorSketch. 10117-10127 - A. Emin Orhan:

A Simple Cache Model for Image Recognition. 10128-10137 - Risi Kondor, Zhen Lin, Shubhendu Trivedi:

Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network. 10138-10147 - Felipe A. Tobar:

Bayesian Nonparametric Spectral Estimation. 10148-10158 - Shivam Garg, Vatsal Sharan, Brian Hu Zhang, Gregory Valiant:

A Spectral View of Adversarially Robust Features. 10159-10169 - Chen Lin, Zhao Zhong, Wei Wu, Junjie Yan:

Synaptic Strength For Convolutional Neural Network. 10170-10179 - Isaac Lage, Andrew Slavin Ross, Samuel J. Gershman, Been Kim, Finale Doshi-Velez:

Human-in-the-Loop Interpretability Prior. 10180-10189 - Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, Massimiliano Pontil:

Learning To Learn Around A Common Mean. 10190-10200 - Fei Wang, James M. Decker, Xilun Wu, Grégory M. Essertel, Tiark Rompf:

Backpropagation with Callbacks: Foundations for Efficient and Expressive Differentiable Programming. 10201-10212 - Luigi Carratino, Alessandro Rudi, Lorenzo Rosasco:

Learning with SGD and Random Features. 10213-10224 - Paavo Parmas:

Total stochastic gradient algorithms and applications in reinforcement learning. 10225-10235 - Diederik P. Kingma, Prafulla Dhariwal:

Glow: Generative Flow with Invertible 1x1 Convolutions. 10236-10245 - Shashank Singh, Ananya Uppal, Boyue Li, Chun-Liang Li, Manzil Zaheer, Barnabás Póczos:

Nonparametric Density Estimation under Adversarial Losses. 10246-10257 - Boris Muzellec, Marco Cuturi:

Generalizing Point Embeddings using the Wasserstein Space of Elliptical Distributions. 10258-10269 - Daniel Strouse, Max Kleiman-Weiner, Josh Tenenbaum, Matthew M. Botvinick, David J. Schwab:

Learning to Share and Hide Intentions using Information Regularization. 10270-10281 - Yingxiang Yang, Bo Dai, Negar Kiyavash, Niao He:

Predictive Approximate Bayesian Computation via Saddle Points. 10282-10291 - Kiran Koshy Thekumparampil, Ashish Khetan, Zinan Lin, Sewoong Oh:

Robustness of conditional GANs to noisy labels. 10292-10303 - Yu Cheng, Ilias Diakonikolas, Daniel Kane, Alistair Stewart:

Robust Learning of Fixed-Structure Bayesian Networks. 10304-10316 - Amit Dhurandhar, Karthikeyan Shanmugam

, Ronny Luss, Peder A. Olsen:
Improving Simple Models with Confidence Profiles. 10317-10327 - Joseph M. Antognini, Jascha Sohl-Dickstein:

PCA of high dimensional random walks with comparison to neural network training. 10328-10337 - Mislav Balunovic, Pavol Bielik, Martin T. Vechev:

Learning to Solve SMT Formulas. 10338-10349 - Nicholas Gallo, Alexander Ihler:

Lifted Weighted Mini-Bucket. 10350-10358 - Siddarth Srinivasan, Carlton Downey, Byron Boots:

Learning and Inference in Hilbert Space with Quantum Graphical Models. 10359-10368 - Hadi Kazemi, Sobhan Soleymani, Fariborz Taherkhani, Seyed Mehdi Iranmanesh, Nasser M. Nasrabadi:

Unsupervised Image-to-Image Translation Using Domain-Specific Variational Information Bound. 10369-10379 - Dimitrios I. Diochnos, Saeed Mahloujifar, Mohammad Mahmoody:

Adversarial Risk and Robustness: General Definitions and Implications for the Uniform Distribution. 10380-10389 - Francesco Paolo Casale, Adrian V. Dalca, Luca Saglietti, Jennifer Listgarten, Nicoló Fusi:

Gaussian Process Prior Variational Autoencoders. 10390-10401 - Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, Taco Cohen:

3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data. 10402-10413 - Donghoon Lee, Sifei Liu, Jinwei Gu, Ming-Yu Liu, Ming-Hsuan Yang, Jan Kautz:

Context-aware Synthesis and Placement of Object Instances. 10414-10424 - Jessica Finocchiaro, Rafael M. Frongillo:

Convex Elicitation of Continuous Properties. 10425-10434 - Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanantakool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, Ryan Sepassi, Blake A. Hechtman:

Mesh-TensorFlow: Deep Learning for Supercomputers. 10435-10444 - Matthew Riemer, Miao Liu, Gerald Tesauro:

Learning Abstract Options. 10445-10455 - Rafael M. Frongillo, Bo Waggoner:

Bounded-Loss Private Prediction Markets. 10456-10465 - Lea Duncker, Maneesh Sahani:

Temporal alignment and latent Gaussian process factor inference in population spike trains. 10466-10476 - Dan Hendrycks, Mantas Mazeika, Duncan Wilson, Kevin Gimpel:

Using Trusted Data to Train Deep Networks on Labels Corrupted by Severe Noise. 10477-10486 - Trefor W. Evans, Prasanth B. Nair:

Discretely Relaxing Continuous Variables for tractable Variational Inference. 10487-10497 - Zi Wang, Beomjoon Kim, Leslie Pack Kaelbling:

Regret bounds for meta Bayesian optimization with an unknown Gaussian process prior. 10498-10509 - Zhang-Wei Hong, Tzu-Yun Shann, Shih-Yang Su, Yi-Hsiang Chang, Tsu-Jui Fu, Chun-Yi Lee:

Diversity-Driven Exploration Strategy for Deep Reinforcement Learning. 10510-10521 - Zhiting Hu, Zichao Yang, Ruslan Salakhutdinov, Lianhui Qin, Xiaodan Liang, Haoye Dong, Eric P. Xing:

Deep Generative Models with Learnable Knowledge Constraints. 10522-10533 - Yubei Chen, Dylan M. Paiton, Bruno A. Olshausen:

The Sparse Manifold Transform. 10534-10545 - Raanan Y. Rohekar, Yaniv Gurwicz, Shami Nisimov, Guy Koren, Gal Novik:

Bayesian Structure Learning by Recursive Bootstrap. 10546-10556 - Moritz Wolter, Angela Yao:

Complex Gated Recurrent Neural Networks. 10557-10567 - Abubakar Abid, James Y. Zou:

Learning a Warping Distance from Unlabeled Time Series Using Sequence Autoencoders. 10568-10578 - Aditya Grover, Tudor Achim, Stefano Ermon:

Streamlining Variational Inference for Constraint Satisfaction Problems. 10579-10589 - Steven Hansen, Alexander Pritzel, Pablo Sprechmann, André Barreto, Charles Blundell:

Fast deep reinforcement learning using online adjustments from the past. 10590-10600 - Alexander Matyasko, Lap-Pui Chau:

Improved Network Robustness with Adversary Critic. 10601-10610 - Shinji Ito, Daisuke Hatano, Hanna Sumita, Akihiro Yabe, Takuro Fukunaga, Naonori Kakimura, Ken-ichi Kawarabayashi:

Regret Bounds for Online Portfolio Selection with a Cardinality Constraint. 10611-10620 - Wei Sun, Junwei Lu, Han Liu:

Sketching Method for Large Scale Combinatorial Inference. 10621-10630 - Arun Sai Suggala, Adarsh Prasad, Pradeep Ravikumar:

Connecting Optimization and Regularization Paths. 10631-10641 - Jinhwan Park, Yoonho Boo, Iksoo Choi, Sungho Shin, Wonyong Sung:

Fully Neural Network Based Speech Recognition on Mobile and Embedded Devices. 10642-10653 - Yilin Zhang, Karl Rohe:

Understanding Regularized Spectral Clustering via Graph Conductance. 10654-10663 - Maria-Florina Balcan, Travis Dick, Colin White:

Data-Driven Clustering via Parameterized Lloyd's Families. 10664-10674 - Renato Negrinho, Matthew Gormley, Geoffrey J. Gordon:

Learning Beam Search Policies via Imitation Learning. 10675-10684 - Ji Xu, Daniel J. Hsu, Arian Maleki:

Benefits of over-parameterization with EM. 10685-10695 - Rui Luo, Jianhong Wang, Yaodong Yang, Jun Wang, Zhanxing Zhu:

Thermostat-assisted continuously-tempered Hamiltonian Monte Carlo for Bayesian learning. 10696-10705 - Roie Levin, Anish Prasad Sevekari, David P. Woodruff:

Robust Subspace Approximation in a Stream. 10706-10716 - Soumendu Sundar Mukherjee, Purnamrita Sarkar, Y. X. Rachel Wang, Bowei Yan:

Mean Field for the Stochastic Blockmodel: Optimization Landscape and Convergence Issues. 10717-10727 - Yair Carmon, John C. Duchi:

Analysis of Krylov Subspace Solutions of Regularized Non-Convex Quadratic Problems. 10728-10738 - Matthew D. Hoffman:

Autoconj: Recognizing and Exploiting Conjugacy Without a Domain-Specific Language. 10739-10749 - Golnaz Ghiasi, Tsung-Yi Lin, Quoc V. Le:

DropBlock: A regularization method for convolutional networks. 10750-10760 - Gabriel Synnaeve, Zeming Lin, Jonas Gehring, Daniel Gant, Vegard Mella, Vasil Khalidov, Nicolas Carion, Nicolas Usunier:

Forward Modeling for Partial Observation Strategy Games - A StarCraft Defogger. 10761-10771 - Saumya Jetley, Nicholas A. Lord, Philip H. S. Torr:

With Friends Like These, Who Needs Adversaries? 10772-10782 - Pavel E. Dvurechenskii, Darina Dvinskikh, Alexander V. Gasnikov, César A. Uribe, Angelia Nedich:

Decentralize and Randomize: Faster Algorithm for Wasserstein Barycenters. 10783-10793 - David Minnen, Johannes Ballé, George Toderici:

Joint Autoregressive and Hierarchical Priors for Learned Image Compression. 10794-10803 - Shuang Li, Shuai Xiao, Shixiang Zhu, Nan Du, Yao Xie, Le Song:

Learning Temporal Point Processes via Reinforcement Learning. 10804-10814 - Shengjia Zhao, Hongyu Ren, Arianna Yuan, Jiaming Song, Noah D. Goodman, Stefano Ermon:

Bias and Generalization in Deep Generative Models: An Empirical Study. 10815-10824 - Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, Martin T. Vechev:

Fast and Effective Robustness Certification. 10825-10836 - Raghav Somani, Chirag Gupta, Prateek Jain, Praneeth Netrapalli:

Support Recovery for Orthogonal Matching Pursuit: Upper and Lower bounds. 10837-10847 - Rachel Cummings, Sara Krehbiel, Yajun Mei, Rui Tuo, Wanrong Zhang:

Differentially Private Change-Point Detection. 10848-10857 - Tong Wang:

Multi-value Rule Sets for Interpretable Classification with Feature-Efficient Representations. 10858-10868 - Sara Magliacane, Thijs van Ommen, Tom Claassen, Stephan Bongers, Philip Versteeg, Joris M. Mooij:

Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions. 10869-10879 - Nima Anari, Constantinos Daskalakis, Wolfgang Maass, Christos H. Papadimitriou, Amin Saberi, Santosh S. Vempala:

Smoothed Analysis of Discrete Tensor Decomposition and Assemblies of Neurons. 10880-10890 - Ian En-Hsu Yen, Wei-Cheng Lee, Kai Zhong, Sung-En Chang, Pradeep Ravikumar, Shou-De Lin:

MixLasso: Generalized Mixed Regression via Convex Atomic-Norm Regularization. 10891-10899 - Aditi Raghunathan, Jacob Steinhardt, Percy Liang:

Semidefinite relaxations for certifying robustness to adversarial examples. 10900-10910 - Nathan Kallus, Aahlad Manas Puli, Uri Shalit:

Removing Hidden Confounding by Experimental Grounding. 10911-10920 - Ankush Mandal, He Jiang, Anshumali Shrivastava, Vivek Sarkar:

Topkapi: Parallel and Fast Sketches for Finding Top-K Frequent Elements. 10921-10931 - Yi Chen, Zhuoran Yang, Yuchen Xie, Zhaoran Wang:

Contrastive Learning from Pairwise Measurements. 10932-10941 - Anuj Sharma, Robert Johnson, Florian Engert, Scott W. Linderman:

Point process latent variable models of larval zebrafish behavior. 10942-10953 - Kevin Bello, Jean Honorio:

Computationally and statistically efficient learning of causal Bayes nets using path queries. 10954-10964 - Guy Bresler, Sung Min Park, Madalina Persu:

Sparse PCA from Sparse Linear Regression. 10965-10975 - Don Kurian Dennis, Chirag Pabbaraju, Harsha Vardhan Simhadri, Prateek Jain:

Multiple Instance Learning for Efficient Sequential Data Classification on Resource-constrained Devices. 10976-10987 - Aniket (Nick) Bajpai, Sankalp Garg, Mausam:

Transfer of Deep Reactive Policies for MDP Planning. 10988-10998 - Samira Samadi, Uthaipon Tao Tantipongpipat, Jamie Morgenstern, Mohit Singh, Santosh S. Vempala:

The Price of Fair PCA: One Extra dimension. 10999-11010 - Patrick H. Chen, Si Si, Yang Li, Ciprian Chelba, Cho-Jui Hsieh:

GroupReduce: Block-Wise Low-Rank Approximation for Neural Language Model Shrinking. 11011-11021

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














