


default search action
31st COLT 2018: Stockholm, Sweden
- Sébastien Bubeck, Vianney Perchet, Philippe Rigollet:

Conference On Learning Theory, COLT 2018, Stockholm, Sweden, 6-9 July 2018. Proceedings of Machine Learning Research 75, PMLR 2018
Preface
- Sébastien Bubeck, Philippe Rigollet:

Conference on Learning Theory 2018: Preface. 1
Best Paper Awards
- Yuanzhi Li, Tengyu Ma, Hongyang Zhang:

Algorithmic Regularization in Over-parameterized Matrix Sensing and Neural Networks with Quadratic Activations. 2-47 - Matthew S. Brennan, Guy Bresler, Wasim Huleihel:

Reducibility and Computational Lower Bounds for Problems with Planted Sparse Structure. 48-166 - Dylan J. Foster, Satyen Kale, Haipeng Luo, Mehryar Mohri, Karthik Sridharan:

Logistic Regression: The Importance of Being Improper. 167-208
Regular Papers
- Steve Hanneke, Adam Tauman Kalai, Gautam Kamath, Christos Tzamos:

Actively Avoiding Nonsense in Generative Models. 209-227 - Vladimir Kolmogorov:

A Faster Approximation Algorithm for the Gibbs Partition Function. 228-249 - Loucas Pillaud-Vivien, Alessandro Rudi, Francis R. Bach:

Exponential Convergence of Testing Error for Stochastic Gradient Methods. 250-296 - Noah Golowich, Alexander Rakhlin, Ohad Shamir:

Size-Independent Sample Complexity of Neural Networks. 297-299 - Xiang Cheng, Niladri S. Chatterji, Peter L. Bartlett, Michael I. Jordan:

Underdamped Langevin MCMC: A non-asymptotic analysis. 300-323 - Zalan Borsos, Andreas Krause, Kfir Y. Levy:

Online Variance Reduction for Stochastic Optimization. 324-357 - Johannes Kirschner, Andreas Krause:

Information Directed Sampling and Bandits with Heteroscedastic Noise. 358-384 - Constantinos Daskalakis, Nishanth Dikkala, Nick Gravin:

Testing Symmetric Markov Chains From a Single Trajectory. 385-409 - Ahmed El Alaoui, Michael I. Jordan:

Detection limits in the high-dimensional spiked rectangular model. 410-438 - Max Simchowitz, Horia Mania, Stephen Tu, Michael I. Jordan, Benjamin Recht:

Learning Without Mixing: Towards A Sharp Analysis of Linear System Identification. 439-473 - Avrim Blum, Lunjia Hu:

Active Tolerant Testing. 474-497 - Yan Shuo Tan, Roman Vershynin:

Polynomial Time and Sample Complexity for Non-Gaussian Component Analysis: Spectral Methods. 498-534 - Vitaly Feldman, Thomas Steinke:

Calibrating Noise to Variance in Adaptive Data Analysis. 535-544 - Prateek Jain, Sham M. Kakade, Rahul Kidambi, Praneeth Netrapalli, Aaron Sidford:

Accelerating Stochastic Gradient Descent for Least Squares Regression. 545-604 - Wenlong Mou, Liwei Wang, Xiyu Zhai, Kai Zheng:

Generalization Bounds of SGLD for Non-convex Learning: Two Theoretical Viewpoints. 605-638 - Dmitry Yarotsky:

Optimal approximation of continuous functions by very deep ReLU networks. 639-649 - Nilesh Tripuraneni, Nicolas Flammarion, Francis R. Bach, Michael I. Jordan:

Averaging Stochastic Gradient Descent on Riemannian Manifolds. 650-687 - Charles Fefferman, Sergei Ivanov, Yaroslav Kurylev, Matti Lassas, Hariharan Narayanan:

Fitting a Putative Manifold to Noisy Data. 688-720 - John N. Tsitsiklis, Kuang Xu, Zhi Xu:

Private Sequential Learning. 721-727 - Jean Barbier, Florent Krzakala

, Nicolas Macris, Léo Miolane, Lenka Zdeborová:
Optimal Errors and Phase Transitions in High-Dimensional Generalized Linear Models. 728-731 - Victor Chernozhukov, Kaspar Wüthrich, Yinchu Zhu:

Exact and Robust Conformal Inference Methods for Predictive Machine Learning with Dependent Data. 732-749 - Nicolò Cesa-Bianchi, Claudio Gentile, Yishay Mansour:

Nonstochastic Bandits with Composite Anonymous Feedback. 750-773 - Naman Agarwal, Elad Hazan:

Lower Bounds for Higher-Order Convex Optimization. 774-792 - Raaz Dwivedi, Yuansi Chen, Martin J. Wainwright, Bin Yu:

Log-concave sampling: Metropolis-Hastings algorithms are fast! 793-797 - Bangrui Chen, Peter I. Frazier, David Kempe:

Incentivizing Exploration by Heterogeneous Users. 798-818 - Ilias Diakonikolas, Jerry Li, Ludwig Schmidt:

Fast and Sample Near-Optimal Algorithms for Learning Multidimensional Histograms. 819-842 - Paul Beame, Shayan Oveis Gharan, Xin Yang:

Time-Space Tradeoffs for Learning Finite Functions from Random Evaluations, with Applications to Polynomials. 843-856 - Belinda Tzen, Tengyuan Liang, Maxim Raginsky:

Local Optimality and Generalization Guarantees for the Langevin Algorithm via Empirical Metastability. 857-875 - Arnab Bhattacharyya, Suprovat Ghoshal, Rishi Saket:

Hardness of Learning Noisy Halfspaces using Polynomial Thresholds. 876-917 - Yasin Abbasi-Yadkori, Peter L. Bartlett, Victor Gabillon, Alan Malek, Michal Valko:

Best of both worlds: Stochastic & adversarial best-arm identification. 918-949 - James Sharpnack:

Learning Patterns for Detection with Multiscale Scan Statistics. 950-969 - Paul Hand, Vladislav Voroninski:

Global Guarantees for Enforcing Deep Generative Priors by Empirical Risk. 970-978 - Thodoris Lykouris, Karthik Sridharan, Éva Tardos:

Small-loss bounds for online learning with partial information. 979-986 - Andreas Maurer, Massimiliano Pontil:

Empirical bounds for functions with weak interactions. 987-1010 - Shiva Prasad Kasiviswanathan, Mark Rudelson:

Restricted Eigenvalue from Stable Rank with Applications to Sparse Linear Regression. 1011-1041 - Chi Jin, Praneeth Netrapalli, Michael I. Jordan:

Accelerated Gradient Descent Escapes Saddle Points Faster than Gradient Descent. 1042-1085 - Oren Mangoubi, Nisheeth K. Vishnoi:

Convex Optimization with Unbounded Nonconvex Oracles using Simulated Annealing. 1086-1124 - Yuanzhi Li, Yingyu Liang:

Learning Mixtures of Linear Regressions with Nearly Optimal Complexity. 1125-1144 - Yuval Dagan, Ohad Shamir:

Detecting Correlations with Little Memory and Communication. 1145-1198 - Gal Dalal, Gugan Thoppe, Balázs Szörényi, Shie Mannor:

Finite Sample Analysis of Two-Timescale Stochastic Approximation with Applications to Reinforcement Learning. 1199-1233 - Timothy Carpenter, Ilias Diakonikolas, Anastasios Sidiropoulos, Alistair Stewart:

Near-Optimal Sample Complexity Bounds for Maximum Likelihood Estimation of Multivariate Log-concave Densities. 1234-1262 - Chen-Yu Wei, Haipeng Luo:

More Adaptive Algorithms for Adversarial Bandits. 1263-1291 - Yin Tat Lee, Aaron Sidford, Santosh S. Vempala:

Efficient Convex Optimization with Membership Oracles. 1292-1294 - Asaf B. Cassel, Shie Mannor, Assaf Zeevi:

A General Approach to Multi-Armed Bandits Under Risk Criteria. 1295-1306 - Tim Roughgarden, Joshua R. Wang:

An Optimal Learning Algorithm for Online Unconstrained Submodular Maximization. 1307-1325 - Vishesh Jain, Frederic Koehler, Elchanan Mossel:

The Mean-Field Approximation: Information Inequalities, Algorithms, and Complexity. 1326-1347 - Mikhail Belkin:

Approximation beats concentration? An approximation view on inference with smooth radial kernels. 1348-1361 - Yu Cheng, Rong Ge:

Non-Convex Matrix Completion Against a Semi-Random Adversary. 1362-1394 - Vishesh Jain, Frederic Koehler, Elchanan Mossel:

The Vertex Sample Complexity of Free Energy is Polynomial. 1395-1419 - Adam R. Klivans, Pravesh K. Kothari, Raghu Meka:

Efficient Algorithms for Outlier-Robust Regression. 1420-1430 - Ana Busic, Sean P. Meyn:

Action-Constrained Markov Decision Processes With Kullback-Leibler Cost. 1431-1444 - Marco Mondelli, Andrea Montanari:

Fundamental Limits of Weak Recovery with Applications to Phase Retrieval. 1445-1450 - Oliver Hinder:

Cutting plane methods can be extended into nonconvex optimization. 1451-1454 - Sanjeev Arora, Wei Hu, Pravesh K. Kothari:

An Analysis of the t-SNE Algorithm for Data Visualization. 1455-1462 - Andrea Locatelli, Alexandra Carpentier:

Adaptivity to Smoothness in X-armed bandits. 1463-1492 - Ashok Cutkosky

, Francesco Orabona:
Black-Box Reductions for Parameter-free Online Learning in Banach Spaces. 1493-1529 - Michela Meister, Gregory Valiant:

A Data Prism: Semi-verified learning in the small-alpha regime. 1530-1546 - Ido Nachum, Jonathan Shafer, Amir Yehudayoff:

A Direct Sum Result for the Information Complexity of Learning. 1547-1568 - Jason M. Altschuler, Kunal Talwar:

Online learning over a finite action set with limited switching. 1569-1573 - Niangjun Chen, Gautam Goel, Adam Wierman:

Smoothed Online Convex Optimization in High Dimensions via Online Balanced Descent. 1574-1594 - Jacob D. Abernethy, Kevin A. Lai, Kfir Y. Levy, Jun-Kun Wang:

Faster Rates for Convex-Concave Games. 1595-1625 - David Durfee, Kevin A. Lai, Saurabh Sawlani:

$\ell_1$ Regression using Lewis Weights Preconditioning and Stochastic Gradient Descent. 1626-1656 - Guy Bresler, Dheeraj Nagaraj:

Optimal Single Sample Tests for Structured versus Unstructured Network Data. 1657-1690 - Jalaj Bhandari, Daniel Russo, Raghav Singal:

A Finite Time Analysis of Temporal Difference Learning With Linear Function Approximation. 1691-1692 - Cynthia Dwork, Vitaly Feldman:

Privacy-preserving Prediction. 1693-1702 - Hongyi Zhang, Suvrit Sra:

An Estimate Sequence for Geodesically Convex Optimization. 1703-1723 - Manish Raghavan, Aleksandrs Slivkins, Jennifer Wortman Vaughan, Zhiwei Steven Wu

:
The Externalities of Exploration and How Data Diversity Helps Exploitation. 1724-1738 - Haipeng Luo, Chen-Yu Wei, Alekh Agarwal, John Langford:

Efficient Contextual Bandits in Non-stationary Worlds. 1739-1776 - Espen Bernton:

Langevin Monte Carlo and JKO splitting. 1777-1798 - Nina Holden, Robin Pemantle, Yuval Peres:

Subpolynomial trace reconstruction for random strings \{and arbitrary deletion probability. 1799-1840 - Jonathan Weed:

An explicit analysis of the entropic penalty in linear programming. 1841-1855 - Chicheng Zhang:

Efficient active learning of sparse halfspaces. 1856-1880 - Samory Kpotufe, Guillaume Martinet:

Marginal Singularity, and the Benefits of Labels in Covariate-Shift. 1882-1886 - Rishabh Dudeja, Daniel Hsu:

Learning Single-Index Models in Gaussian Space. 1887-1930 - Yingjie Fei, Yudong Chen:

Hidden Integrality of SDP Relaxations for Sub-Gaussian Mixture Models. 1931-1965 - Jason M. Klusowski, Yihong Wu:

Counting Motifs with Graph Sampling. 1966-2011 - Piotr Indyk, Tal Wagner:

Approximate Nearest Neighbors in Limited Space. 2012-2036 - Cheng Mao, Ashwin Pananjady, Martin J. Wainwright:

Breaking the $1/\sqrtn$ Barrier: Faster Rates for Permutation-based Models in Polynomial Time. 2037-2042 - Daniel Alabi, Nicole Immorlica, Adam Kalai:

Unleashing Linear Optimizers for Group-Fair Learning and Optimization. 2043-2066 - Dirk van der Hoeven, Tim van Erven, Wojciech Kotlowski:

The Many Faces of Exponential Weights in Online Learning. 2067-2092 - Andre Wibisono:

Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem. 2093-3027 - Dylan J. Foster, Alexander Rakhlin, Karthik Sridharan:

Online Learning: Sufficient Statistics and the Burkholder Method. 3028-3064 - John C. Duchi, Feng Ruan, Chulhee Yun:

Minimax Bounds on Stochastic Batched Convex Optimization. 3065-3162 - Yanjun Han, Ayfer Özgür, Tsachy Weissman:

Geometric Lower Bounds for Distributed Parameter Estimation under Communication Constraints. 3163-3188 - Yanjun Han, Jiantao Jiao, Tsachy Weissman:

Local moment matching: A unified methodology for symmetric functional estimation and distribution estimation under Wasserstein distance. 3189-3221 - Gergely Neu, Lorenzo Rosasco:

Iterate Averaging as Regularization for Stochastic Gradient Descent. 3222-3242 - Srinadh Bhojanapalli, Nicolas Boumal, Prateek Jain, Praneeth Netrapalli:

Smoothed analysis for low-rank solutions to semidefinite programs in quadratic penalty form. 3243-3270 - Themis Gouleakis, Christos Tzamos, Manolis Zampetakis

:
Certified Computation from Unreliable Datasets. 3271-3294
Open Problems
- Nan Jiang, Alekh Agarwal:

Open Problem: The Dependence of Sample Complexity Lower Bounds on Planning Horizon. 3395-3398 - Elad Hazan, Roi Livni:

Open problem: Improper learning of mixtures of Gaussians. 3399-3402

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














