


default search action
GECCO 2021: Lille, France
- Francisco Chicano, Krzysztof Krawiec:

GECCO '21: Genetic and Evolutionary Computation Conference, Lille, France, July 10-14, 2021. ACM 2021, ISBN 978-1-4503-8350-9
Ant colony optimization and swarm intelligence
- Riade Benbaki, Ziyad Benomar, Benjamin Doerr:

A rigorous runtime analysis of the 2-MMASib on jump functions: ant colony optimizers can cope well with local optima. 4-13 - Quoc Trung Dinh, Duc Dong Do, Minh Hoàng Hà:

Ants can solve the parallel drone scheduling traveling salesman problem. 14-21 - Calum C. Imrie, J. Michael Herrmann, Olaf Witkowski:

The paradox of choice in evolving swarms: information overload leads to limited sensing. 22-30 - Tomasz Kulpa

, Krzysztof Trojanowski
, Krzysztof Wójcik
:
Stasis type particle stability in a stochastic model of particle swarm optimization. 31-39 - Mariana Macedo, Lydia Taw, Nishant Gurrapadi, Rodrigo C. Lira

, Diego Pinheiro
, Marcos A. C. Oliveira, Carmelo J. A. Bastos Filho
, Ronaldo Menezes:
Fishing for interactions: a network science approach to modeling fish school search. 40-48 - Judhi Prasetyo, Giulia De Masi, Raina Zakir, Muhanad H. Mohammed Alkilabi

, Elio Tuci, Eliseo Ferrante
:
A bio-inspired spatial defence strategy for collective decision making in self-organized swarms. 49-56 - Xinhua Yang, Yufan Zhou, Ailing Shen, Juan Lin, Yiwen Zhong:

A hybrid ant colony optimization algorithm for the knapsack problem with a single continuous variable. 57-65
Complex systems (artificial life, artificial immune systems, generative and developmental systems, evolutionary robotics, evolvable hardware)
- Benjamin Capps, Jacob Schrum:

Using multiple generative adversarial networks to build better-connected levels for mega man. 66-74 - Leo Cazenille:

Ensemble feature extraction for multi-container quality-diversity algorithms. 75-83 - Antoine Cully

:
Multi-emitter MAP-elites: improving quality, diversity and data efficiency with heterogeneous sets of emitters. 84-92 - Lara Dal Molin, Jasmeen Kanwal, Christopher Stone:

Resource availability and the evolution of cooperation in a 3D agent-based simulation. 93-101 - Seth G. Fitzgerald, Gary W. Delaney, David Howard, Frédéric Maire:

Evolving soft robotic jamming grippers. 102-110 - Alexandru Ianta, Ryan Amaral, Caleidgh Bayer, Robert J. Smith

, Malcolm I. Heywood:
On the impact of tangled program graph marking schemes under the atari reinforcement learning benchmark. 111-119 - Quintino Francesco Lotito

, Leonardo Lucio Custode
, Giovanni Iacca
:
A signal-centric perspective on the evolution of symbolic communication. 120-128 - Eric Medvet, Alberto Bartoli, Federico Pigozzi

, Marco Rochelli:
Biodiversity in evolved voxel-based soft robots. 129-137 - Christina Spanellis, Brooke Stewart, Geoff Nitschke

:
The Environment and Body-Brain Complexity. 138-145 - Christopher Mailer, Geoff Nitschke

, Leanne Raw
:
Evolving gaits for damage control in a hexapod robot. 146-153 - Giuseppe Paolo

, Alexandre Coninx, Stéphane Doncieux, Alban Laflaquière:
Sparse reward exploration via novelty search and emitters. 154-162 - Enna Sachdeva, Shauharda Khadka, Somdeb Majumdar, Kagan Tumer:

MAEDyS: multiagent evolution via dynamic skill selection. 163-171 - Achkan Salehi, Alexandre Coninx, Stéphane Doncieux:

BR-NS: an archive-less approach to novelty search. 172-179 - Konstantinos Sfikas

, Antonios Liapis, Georgios N. Yannakakis
:
Monte Carlo elites: quality-diversity selection as a multi-armed bandit problem. 180-188 - Enrico Zardini

, Davide Zappetti, Davide Zambrano, Giovanni Iacca
, Dario Floreano:
Seeking quality diversity in evolutionary co-design of morphology and control of soft tensegrity modular robots. 189-197
Evolutionary combinatorial optimization and metaheuristics
- Jakob Bossek

, Frank Neumann:
Evolutionary diversity optimization and the minimum spanning tree problem. 198-206 - Francisco Chicano, Gabriela Ochoa, Marco Tomassini:

Real-like MAX-SAT instances and the landscape structure across the phase transition. 207-215 - Bilel Derbel, Lorenzo Canonne:

A graph coloring based parallel hill climber for large-scale NK-landscapes. 216-224 - Ekhine Irurozki, Manuel López-Ibáñez:

Unbalanced mallows models for optimizing expensive black-box permutation problems. 225-233 - Alexandre D. Jesus

, Luís Paquete
, Bilel Derbel, Arnaud Liefooghe
:
On the design and anytime performance of indicator-based branch and bound for multi-objective combinatorial optimization. 234-242 - Krzysztof Michalak:

Generating hard inventory routing problem instances using evolutionary algorithms. 243-251 - Anirban Mukhopadhyay, L. Darrell Whitley, Renato Tinós

:
An efficient implementation of iterative partial transcription for the traveling salesman problem. 252-260 - Aneta Neumann

, Jakob Bossek
, Frank Neumann:
Diversifying greedy sampling and evolutionary diversity optimisation for constrained monotone submodular functions. 261-269 - Marcus Ritt, Alexander J. Benavides

:
The tiebreaking space of constructive heuristics for the permutation flowshop minimizing makespan. 270-277 - Sara Tari, Gabriela Ochoa:

Local search pivoting rules and the landscape global structure. 278-286 - Shaolin Wang

, Yi Mei
, Mengjie Zhang:
Two-stage multi-objective genetic programming with archive for uncertain capacitated arc routing problem. 287-295 - Adrian Worring

, Benjamin E. Mayer
, Kay Hamacher:
Genetic algorithm niching by (Quasi-)infinite memory. 296-304
Evolutionary machine learning
- Santiago Gonzalez, Risto Miikkulainen:

Optimizing loss functions through multi-variate taylor polynomial parameterization. 305-313 - Adán José García

, Wilfrido Gómez-Flores:
A survey of cluster validity indices for automatic data clustering using differential evolution. 314-322 - Jason Zhi Liang, Santiago Gonzalez, Hormoz Shahrzad, Risto Miikkulainen:

Regularized evolutionary population-based training. 323-331 - Yoshiki Nakamura, Motoki Horiuchi, Masaya Nakata:

Convergence analysis of rule-generality on the XCS classifier system. 332-339 - Shabnam Nazmi, Abdollah Homaifar, Mohd Anwar:

An effective action covering for multi-label learning classifier systems: a graph-theoretic approach. 340-348 - Wenbin Pei, Bing Xue, Lin Shang, Mengjie Zhang:

Genetic programming for borderline instance detection in high-dimensional unbalanced classification. 349-357 - Francesco Ranzato, Marco Zanella:

Genetic adversarial training of decision trees. 358-367 - Tanja Tornede

, Alexander Tornede, Marcel Wever
, Eyke Hüllermeier:
Coevolution of remaining useful lifetime estimation pipelines for automated predictive maintenance. 368-376 - Jamal Toutouh, Una-May O'Reilly:

Signal propagation in a gradient-based and evolutionary learning system. 377-385 - Yingfang Yuan

, Wenjun Wang, Wei Pang
:
A systematic comparison study on hyperparameter optimisation of graph neural networks for molecular property prediction. 386-394
Evolutionary multiobjective optimization
- Jesús Guillermo Falcón-Cardona

, Saúl Zapotecas Martínez
, Abel García-Nájera
:
Pareto compliance from a practical point of view. 395-402 - Linjun He

, Hisao Ishibuchi
, Dipti Srinivasan:
Metric for evaluating normalization methods in multiobjective optimization. 403-411 - Andrzej Jaszkiewicz

, Piotr Zielniewicz
:
Quick extreme hypervolume contribution algorithm. 412-420 - Arnaud Liefooghe

, Sébastien Vérel
, Benjamin Lacroix, Alexandru-Ciprian Zavoianu, John A. W. McCall:
Landscape features and automated algorithm selection for multi-objective interpolated continuous optimisation problems. 421-429 - Eugénie Marescaux, Nikolaus Hansen

:
Hypervolume in biobjective optimization cannot converge faster than Ω(1/p). 430-438 - Ke Shang, Hisao Ishibuchi

, Yang Nan:
Distance-based subset selection revisited. 439-447 - Ke Shang, Hisao Ishibuchi

, Weiyu Chen:
Greedy approximated hypervolume subset selection for many-objective optimization. 448-456 - Seyed Mahdi Shavarani

, Manuel López-Ibáñez
, Joshua D. Knowles
:
Realistic utility functions prove difficult for state-of-the-art interactive multiobjective optimization algorithms. 457-465 - Kendall Taylor, Huong Ha, Minyi Li, Jeffrey Chan, Xiaodong Li:

Bayesian preference learning for interactive multi-objective optimisation. 466-475 - Michal K. Tomczyk

, Milosz Kadzinski:
Interactive evolutionary multiple objective optimization algorithm using a fast calculation of holistic acceptabilities. 476-484 - Jinyuan Zhang, Hisao Ishibuchi

, Ke Shang, Linjun He
, Lie Meng Pang, Yiming Peng:
Environmental selection using a fuzzy classifier for multiobjective evolutionary algorithms. 485-492
Evolutionary numerical optimization
- Youhei Akimoto:

Saddle point optimization with approximate minimization oracle. 493-501 - Tae Jong Choi, Julian Togelius

:
Self-referential quality diversity through differential MAP-Elites. 502-509 - Jacob de Nobel, Hao Wang, Thomas Bäck

:
Explorative data analysis of time series based algorithm features of CMA-ES variants. 510-518 - Paul Dufossé, Nikolaus Hansen

:
Augmented lagrangian, penalty techniques and surrogate modeling for constrained optimization with CMA-ES. 519-527 - Zbynek Pitra, Marek Hanus, Jan Koza

, Jirí Tumpach
, Martin Holena:
Interaction between model and its evolution control in surrogate-assisted CMA evolution strategy. 528-536 - Patrick Spettel, Hans-Georg Beyer:

A matrix adaptation evolution strategy for optimization on general quadratic manifolds. 537-545 - Ryoji Tanabe:

Towards exploratory landscape analysis for large-scale optimization: a dimensionality reduction framework. 546-555
Genetic algorithms
- Jakob Bossek, Aneta Neumann

, Frank Neumann:
Breeding diverse packings for the knapsack problem by means of diversity-tailored evolutionary algorithms. 556-564 - Claude Carlet, Domagoj Jakobovic, Stjepan Picek:

Evolutionary algorithms-assisted construction of cryptographic boolean functions. 565-573 - Anh Viet Do, Mingyu Guo, Aneta Neumann

, Frank Neumann:
Analysis of evolutionary diversity optimisation for permutation problems. 574-582 - Arkadiy Dushatskiy, Tanja Alderliesten

, Peter A. N. Bosman:
A novel surrogate-assisted evolutionary algorithm applied to partition-based ensemble learning. 583-591 - Daniel Kantor, Fernando J. Von Zuben, Fabrício Olivetti de França

:
Simulated annealing for symbolic regression. 592-599 - Adel Nikfarjam, Jakob Bossek

, Aneta Neumann
, Frank Neumann:
Entropy-based evolutionary diversity optimisation for the traveling salesperson problem. 600-608 - Michal Witold Przewozniczek

, Marcin Michal Komarnicki
, Bartosz Frej:
Direct linkage discovery with empirical linkage learning. 609-617 - Manou Rosenberg

, Tim French
, Mark Reynolds
, Lyndon While:
A genetic algorithm approach for the Euclidean Steiner tree problem with soft obstacles. 618-626 - Renato Tinós

, Darrell Whitley, Francisco Chicano, Gabriela Ochoa:
Partition crossover for continuous optimization: ePX. 627-635 - Swetha Varadarajan, Darrell Whitley:

A parallel ensemble genetic algorithm for the traveling salesman problem. 636-643 - Darrell Whitley, Francisco Chicano, Hernán E. Aguirre:

Quadratization of gray coded representations, long path problems and needle functions. 644-651
General evolutionary computation and hybrids
- Julian Blank, Kalyanmoy Deb:

PSAF: a probabilistic surrogate-assisted framework for single-objective optimization. 652-659 - Maxim Buzdalov, Carola Doerr:

Optimal static mutation strength distributions for the (1 + λ) evolutionary algorithm on OneMax. 660-668 - Tome Eftimov, Anja Jankovic, Gorjan Popovski, Carola Doerr, Peter Korosec:

Personalizing performance regression models to black-box optimization problems. 669-677 - Alexander Hagg

, Sebastian Berns, Alexander Asteroth
, Simon Colton, Thomas Bäck
:
Expressivity of parameterized and data-driven representations in quality diversity search. 678-686 - Anja Jankovic, Gorjan Popovski, Tome Eftimov, Carola Doerr:

The impact of hyper-parameter tuning for landscape-aware performance regression and algorithm selection. 687-696 - Atsuhiro Miyagi, Kazuto Fukuchi, Jun Sakuma, Youhei Akimoto:

Adaptive scenario subset selection for min-max black-box continuous optimization. 697-705 - Hayato Noguchi, Tomohiro Harada

, Ruck Thawonmas:
Parallel differential evolution applied to interleaving generation with precedence evaluation of tentative solutions. 706-713 - Michal Shlapentokh-Rothman, Jonathan Kelly

, Avital Baral, Erik Hemberg, Una-May O'Reilly:
Coevolutionary modeling of cyber attack patterns and mitigations using public datasets. 714-722 - Nicolas Szczepanski, Gilles Audemard, Laetitia Jourdan

, Christophe Lecoutre, Lucien Mousin, Nadarajen Veerapen
:
A hybrid CP/MOLS approach for multi-objective imbalanced classification. 723-731 - Braden N. Tisdale, Deacon Seals, Aaron Scott Pope, Daniel R. Tauritz

:
Directing evolution: the automated design of evolutionary pathways using directed graphs. 732-740 - Weijie Zheng

, Qiaozhi Zhang, Huanhuan Chen, Xin Yao:
When non-elitism meets time-linkage problems. 741-749
Genetic programming
- Guilherme Seidyo Imai Aldeia

, Fabrício Olivetti de França
:
Measuring feature importance of symbolic regression models using partial effects. 750-758 - Mazhar Ansari Ardeh

, Yi Mei
, Mengjie Zhang:
A novel multi-task genetic programming approach to uncertain capacitated Arc routing problem. 759-767 - Francisco Baeta, João Correia

, Tiago Martins
, Penousal Machado:
Speed benchmarking of genetic programming frameworks. 768-775 - Aurélie Boisbunon

, Carlo Fanara, Ingrid Grenet, Jonathan Daeden, Alexis Vighi, Marc Schoenauer:
Zoetrope genetic programming for regression. 776-784 - Thomas Helmuth, Peter Kelly:

PSB2: the second program synthesis benchmark suite. 785-794 - Domagoj Jakobovic, Luca Manzoni, Luca Mariot, Stjepan Picek, Mauro Castelli

:
CoInGP: convolutional inpainting with genetic programming. 795-803 - Yang Qing, Chi Ma, Yu Zhou

, Xiao Zhang
, Haowen Xia:
Cooperative coevolutionary multiobjective genetic programming for microarray data classification. 804-811 - Stefano Ruberto, Valerio Terragni

, Jason H. Moore:
Towards effective GP multi-class classification based on dynamic targets. 812-821 - Dominik Sobania

, Franz Rothlauf:
A generalizability measure for program synthesis with genetic programming. 822-829 - Marco Virgolin:

Genetic programming is naturally suited to evolve bagging ensembles. 830-839 - Alden H. Wright, Cheyenne L. Laue:

Evolvability and complexity properties of the digital circuit genotype-phenotype map. 840-848
Neuroevolution
- Rui P. Cardoso, Emma Hart, David Burth Kurka, Jeremy V. Pitt:

Using novelty search to explicitly create diversity in ensembles of classifiers. 849-857 - Souvik Das, Anirudh Shankar, Vaneet Aggarwal:

Training spiking neural networks with a multi-agent evolutionary robotics framework. 858-865 - Olle Nilsson, Antoine Cully

:
Policy gradient assisted MAP-Elites. 866-875 - Matheus Nunes, Paulo M. Fraga, Gisele L. Pappa:

Fitness landscape analysis of graph neural network architecture search spaces. 876-884 - Jason Orlosky

, Tim Grabowski:
Genetic crossover in the evolution of time-dependent neural networks. 885-891 - Joachim Winther Pedersen

, Sebastian Risi:
Evolving and merging hebbian learning rules: increasing generalization by decreasing the number of rules. 892-900 - Nemanja Rakicevic, Antoine Cully

, Petar Kormushev:
Policy manifold search: exploring the manifold hypothesis for diversity-based neuroevolution. 901-909 - Nilotpal Sinha

, Kuan-Wen Chen:
Evolving neural architecture using one shot model. 910-918 - Paul Templier

, Emmanuel Rachelson
, Dennis G. Wilson
:
A geometric encoding for neural network evolution. 919-927
Real world applications
- Uwe Bauknecht:

A genetic algorithm approach to virtual topology design for multi-layer communication networks. 928-936 - Maximilian Böther, Leon Schiller, Philipp Fischbeck, Louise Molitor, Martin S. Krejca

, Tobias Friedrich:
Evolutionary minimization of traffic congestion. 937-945 - Marcin Czajkowski, Krzysztof Jurczuk, Marek Kretowski

:
Accelerated evolutionary induction of heterogeneous decision trees for gene expression-based classification. 946-954 - Alexandros Doumanoglou, Petros Drakoulis, Kyriaki Christaki

, Nikolaos Zioulis
, Vladimiros Sterzentsenko, Antonis Karakottas, Dimitrios Zarpalas, Petros Daras:
Zeroth-order optimizer benchmarking for 3D performance capture: a real-world use case analysis. 955-963 - Myoung Hoon Ha, Seung-geun Chi, Sangyeop Lee, Yujin Cha, Byung-Ro Moon:

Evolutionary meta reinforcement learning for portfolio optimization. 964-972 - Masood Jabarnejad

:
A genetic algorithm for AC optimal transmission switching. 973-981 - Alejandro Lopez Rincon

, Carmina A. Perez Romero, Lucero Mendoza Maldonado, Eric Claassen, Johan Garssen
, Aletta D. Kraneveld
, Alberto Tonda:
Design of specific primer sets for SARS-CoV-2 variants using evolutionary algorithms. 982-990 - Zeyuan Ma

, Hongshu Guo, Yinxuan Gui, Yue-Jiao Gong:
An efficient computational approach for automatic itinerary planning on web servers. 991-999 - Amit Mandelbaum, Doron Haritan Kazakov, Natali Shechtman:

Continuously running genetic algorithm for real-time networking device optimization. 1000-1008 - Risto Miikkulainen, Elliot Meyerson, Xin Qiu, Ujjayant Sinha, Raghav Kumar, Karen Hofmann, Yiyang Matt Yan, Michael Ye, Jingyuan Yang, Damon Caiazza, Stephanie Manson Brown:

Evaluating medical aesthetics treatments through evolved age-estimation models. 1009-1017 - Dena F. Mujtaba, Nihar R. Mahapatra:

Multi-objective optimization of item selection in computerized adaptive testing. 1018-1026 - Nono S. C. Merleau, Matteo Smerlak:

A simple evolutionary algorithm guided by local mutations for an efficient RNA design. 1027-1034 - Brandon Parker, Hemant Kumar Singh

, Tapabrata Ray:
Multi-objective optimization across multiple concepts: a case study on lattice structure design. 1035-1042 - Muhilan Ramamoorthy

, Stephanie Forrest
, Violet R. Syrotiuk:
MA-ABC: a memetic algorithm optimizing attractiveness, balance, and cost for capacitated Arc routing problems. 1043-1051 - Takumi Tanabe, Kazuto Fukuchi, Jun Sakuma, Youhei Akimoto:

Level generation for angry birds with sequential VAE and latent variable evolution. 1052-1060 - Igor Vatolkin, Fabian Ostermann

, Meinard Müller:
An evolutionary multi-objective feature selection approach for detecting music segment boundaries of specific types. 1061-1069 - Wolfgang Weintritt, Nysret Musliu

, Felix Winter:
Solving the paintshop scheduling problem with memetic algorithms. 1070-1078 - Yue Xie, Aneta Neumann

, Frank Neumann:
Heuristic strategies for solving complex interacting stockpile blending problem with chance constraints. 1079-1087
Search-based software engineering
- Sebastian Vogl, Sebastian Schweikl, Gordon Fraser:

Encoding the certainty of boolean variables to improve the guidance for search-based test generation. 1088-1096 - Nils Weidmann, Gregor Engels:

Concurrent model synchronisation with multiple objectives. 1097-1105 - Kaiou Yin, Paolo Arcaini

, Tao Yue, Shaukat Ali:
Analyzing the impact of product configuration variations on advanced driver assistance systems with search. 1106-1114
Theory
- Denis Antipov, Maxim Buzdalov, Benjamin Doerr:

Lazy parameter tuning and control: choosing all parameters randomly from a power-law distribution. 1115-1123 - Henry Bambury, Antoine Bultel, Benjamin Doerr:

Generalized jump functions. 1124-1132 - Duc-Cuong Dang, Anton V. Eremeev

, Per Kristian Lehre:
Non-elitist evolutionary algorithms excel in fitness landscapes with sparse deceptive regions and dense valleys. 1133-1141 - Benjamin Doerr, Timo Kötzing:

Lower bounds from fitness levels made easy. 1142-1150 - Mario Alejandro Hevia Fajardo

, Dirk Sudholt:
Self-adjusting population sizes for non-elitist evolutionary algorithms: why success rates matter. 1151-1159 - Per Kristian Lehre, Xiaoyu Qin

:
More precise runtime analyses of non-elitist EAs in uncertain environments. 1160-1168 - Daiki Morinaga

, Kazuto Fukuchi, Jun Sakuma, Youhei Akimoto:
Convergence rate of the (1+1)-evolution strategy with success-based step-size adaptation on convex quadratic functions. 1169-1177 - Amirhossein Rajabi

, Carsten Witt
:
Stagnation detection in highly multimodal fitness landscapes. 1178-1186 - Yue Xie, Aneta Neumann

, Frank Neumann, Andrew M. Sutton
:
Runtime analysis of RLS and the (1+1) EA for the chance-constrained knapsack problem with correlated uniform weights. 1187-1194

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














