


default search action
12. AISTATS 2009: Clearwater Beach, Florida, USA
- David A. Van Dyk, Max Welling:

Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics, AISTATS 2009, Clearwater Beach, Florida, USA, April 16-18, 2009. JMLR Proceedings 5, JMLR.org 2009 - David A. Van Dyk, Max Welling:

Preface. - Margareta Ackerman, Shai Ben-David:

Clusterability: A Theoretical Study. 1-8 - Mauricio A. Álvarez, David Luengo, Neil D. Lawrence:

Latent Force Models. 9-16 - Artin Armagan:

Variational Bridge Regression. 17-24 - Shai Ben-David, Tyler Lu, Dávid Pál, Miroslava Sotáková:

Learning Low Density Separators. 25-32 - Liefeng Bo, Cristian Sminchisescu:

Supervised Spectral Latent Variable Models. 33-40 - Héctor Corrada Bravo, Stephen J. Wright, Kevin H. Eng, Sündüz Keles, Grace Wahba:

Estimating Tree-Structured Covariance Matrices via Mixed-Integer Programming. 41-48 - Gavin Brown:

A New Perspective for Information Theoretic Feature Selection. 49-56 - Alberto Giovanni Busetto, Joachim M. Buhmann:

Structure Identification by Optimized Interventions. 57-64 - Kevin Robert Canini, Lei Shi, Thomas L. Griffiths:

Online Inference of Topics with Latent Dirichlet Allocation. 65-72 - Carlos M. Carvalho, Nicholas G. Polson, James G. Scott:

Handling Sparsity via the Horseshoe. 73-80 - Jonathan D. Chang, David M. Blei:

Relational Topic Models for Document Networks. 81-88 - Wei Chu, Zoubin Ghahramani:

Probabilistic Models for Incomplete Multi-dimensional Arrays. 89-96 - Stéphan Clémençon, Nicolas Vayatis:

On Partitioning Rules for Bipartite Ranking. 97-104 - Koby Crammer, Mehryar Mohri, Fernando Pereira:

Gaussian Margin Machines. 105-112 - Dafna Shahaf, Carlos Guestrin:

Learning Thin Junction Trees via Graph Cuts. 113-120 - Tom Diethe, Zakria Hussain, David R. Hardoon, John Shawe-Taylor:

Matching Pursuit Kernel Fisher Discriminant Analysis. 121-128 - Joshua V. Dillon, Guy Lebanon:

Statistical and Computational Tradeoffs in Stochastic Composite Likelihood. 129-136 - Finale Doshi, Kurt Miller, Jurgen Van Gael, Yee Whye Teh:

Variational Inference for the Indian Buffet Process. 137-144 - Frederik Eaton, Zoubin Ghahramani:

Choosing a Variable to Clamp. 145-152 - Dumitru Erhan, Pierre-Antoine Manzagol, Yoshua Bengio, Samy Bengio, Pascal Vincent:

The Difficulty of Training Deep Architectures and the Effect of Unsupervised Pre-Training. 153-160 - Inmar E. Givoni, Brendan J. Frey:

Semi-Supervised Affinity Propagation with Instance-Level Constraints. 161-168 - Andrew B. Goldberg, Xiaojin Zhu, Aarti Singh, Zhiting Xu, Robert D. Nowak:

Multi-Manifold Semi-Supervised Learning. 169-176 - Joseph Gonzalez, Yucheng Low, Carlos Guestrin:

Residual Splash for Optimally Parallelizing Belief Propagation. 177-184 - Yue Guan, Jennifer G. Dy:

Sparse Probabilistic Principal Component Analysis. 185-192 - Saptarshi Guha, Paul Kidwell, Ryan Hafen, William S. Cleveland:

Visualization Databases for the Analysis of Large Complex Datasets. 193-200 - Andrew Guillory, Erick Chastain, Jeff A. Bilmes:

Active Learning as Non-Convex Optimization. 201-208 - Steve Hanneke, Eric P. Xing:

Network Completion and Survey Sampling. 209-215 - Jarvis D. Haupt, Rui M. Castro, Robert D. Nowak:

Distilled sensing: selective sampling for sparse signal recovery. 216-223 - Katherine A. Heller, Yee Whye Teh, Dilan Görür:

Infinite Hierarchical Hidden Markov Models. 224-231 - Matthew Hoffman, Nando de Freitas, Arnaud Doucet, Jan Peters:

An Expectation Maximization Algorithm for Continuous Markov Decision Processes with Arbitrary Reward. 232-239 - Bert Huang, Ansaf Salleb-Aouissi:

Maximum Entropy Density Estimation with Incomplete Presence-Only Data. 240-247 - Jonathan Huang, Carlos Guestrin, Xiaoye Jiang, Leonidas J. Guibas:

Exploiting Probabilistic Independence for Permutations. 248-255 - Alexander Ihler, David A. McAllester:

Particle Belief Propagation. 256-263 - Michael Johanson, Michael H. Bowling:

Data Biased Robust Counter Strategies. 264-271 - Varun Kanade, H. Brendan McMahan, Brent Bryan:

Sleeping Experts and Bandits with Stochastic Action Availability and Adversarial Rewards. 272-279 - Minyoung Kim, Vladimir Pavlovic

:
Covariance Operator Based Dimensionality Reduction with Extension to Semi-Supervised Settings. 280-287 - Nicole Krämer, Masashi Sugiyama, Mikio L. Braun:

Lanczos Approximations for the Speedup of Kernel Partial Least Squares Regression. 288-295 - Brian Kulis, Suvrit Sra, Inderjit S. Dhillon:

Convex Perturbations for Scalable Semidefinite Programming. 296-303 - Sanjiv Kumar, Mehryar Mohri, Ameet Talwalkar:

Sampling Techniques for the Nystrom Method. 304-311 - Hugo Larochelle, Dumitru Erhan, Pascal Vincent:

Deep Learning using Robust Interdependent Codes. 312-319 - Hyekyoung Lee, Seungjin Choi:

Group Nonnegative Matrix Factorization for EEG Classification. 320-327 - Fuxin Li, Yun-Shan Fu, Yu-Hong Dai, Cristian Sminchisescu, Jue Wang:

Kernel Learning by Unconstrained Optimization. 328-335 - Wu-Jun Li, Zhihua Zhang, Dit-Yan Yeung:

Latent Wishart Processes for Relational Kernel Learning. 336-343 - Yufeng Li, Ivor W. Tsang

, James Tin-Yau Kwok, Zhi-Hua Zhou:
Tighter and Convex Maximum Margin Clustering. 344-351 - Yuxi Li, Csaba Szepesvári, Dale Schuurmans:

Learning Exercise Policies for American Options. 352-359 - Yuanqing Lin, Shenghuo Zhu, Daniel D. Lee, Ben Taskar:

Learning Sparse Markov Network Structure via Ensemble-of-Trees Models. 360-367 - Christoph Lippert, Oliver Stegle, Zoubin Ghahramani, Karsten M. Borgwardt:

A kernel method for unsupervised structured network inference. 368-375 - Han Liu, Jian Zhang:

Estimation Consistency of the Group Lasso and its Applications. 376-383 - Laurens van der Maaten:

Learning a Parametric Embedding by Preserving Local Structure. 384-391 - Bhushan Mandhani, Marina Meila:

Tractable Search for Learning Exponential Models of Rankings. 392-399 - Vikash Mansinghka, Daniel M. Roy, Eric Jonas, Joshua B. Tenenbaum:

Exact and Approximate Sampling by Systematic Stochastic Search. 400-407 - Patrick Pletscher, Cheng Soon Ong, Joachim M. Buhmann:

Spanning Tree Approximations for Conditional Random Fields. 408-415 - Liva Ralaivola, Marie Szafranski, Guillaume Stempfel:

Chromatic PAC-Bayes Bounds for Non-IID Data. 416-423 - Nathan D. Ratliff, Brian D. Ziebart, Kevin M. Peterson, J. Andrew Bagnell, Martial Hebert, Anind K. Dey, Siddhartha S. Srinivasa:

Inverse Optimal Heuristic Control for Imitation Learning. 424-431 - Steven de Rooij, Tim van Erven:

Learning the Switching Rate by Discretising Bernoulli Sources Online. 432-439 - Dan Roth, Kevin Small, Ivan Titov:

Sequential Learning of Classifiers for Structured Prediction Problems. 440-447 - Ruslan Salakhutdinov, Geoffrey E. Hinton:

Deep Boltzmann Machines. 448-455 - Mark Schmidt, Ewout van den Berg, Michael P. Friedlander, Kevin P. Murphy:

Optimizing Costly Functions with Simple Constraints: A Limited-Memory Projected Quasi-Newton Algorithm. 456-463 - Clayton Scott, Gilles Blanchard:

Novelty detection: Unlabeled data definitely help. 464-471 - Yevgeny Seldin, Naftali Tishby:

PAC-Bayesian Generalization Bound for Density Estimation with Application to Co-clustering. 472-479 - John Shawe-Taylor, David R. Hardoon:

PAC-Bayes Analysis Of Maximum Entropy Classification. 480-487 - Nino Shervashidze, S. V. N. Vishwanathan, Tobias Petri, Kurt Mehlhorn, Karsten M. Borgwardt:

Efficient graphlet kernels for large graph comparison. 488-495 - Qinfeng Shi

, James Petterson, Gideon Dror, John Langford, Alexander J. Smola, Alexander L. Strehl, Vishy Vishwanathan:
Hash Kernels. 496-503 - Tomi Silander, Teemu Roos, Petri Myllymäki:

Locally Minimax Optimal Predictive Modeling with Bayesian Networks. 504-511 - Ricardo Bezerra de Andrade e Silva, Robert B. Gramacy:

MCMC Methods for Bayesian Mixtures of Copulas. 512-519 - Ricardo Bezerra de Andrade e Silva, Zoubin Ghahramani:

Factorial Mixture of Gaussians and the Marginal Independence Model. 520-527 - Michael Siracusa, John W. Fisher III:

Tractable Bayesian Inference of Time-Series Dependence Structure. 528-535 - Alexander J. Smola, Le Song, Choon Hui Teo:

Relative Novelty Detection. 536-543 - David A. Sontag, Tommi S. Jaakkola:

Tree Block Coordinate Descent for MAP in Graphical Models. 544-551 - Thomas S. Stepleton, Zoubin Ghahramani, Geoffrey J. Gordon, Tai Sing Lee:

The Block Diagonal Infinite Hidden Markov Model. 552-559 - Peter Sunehag, Jochen Trumpf, S. V. N. Vishwanathan, Nicol N. Schraudolph:

Variable Metric Stochastic Approximation Theory. 560-566 - Michalis K. Titsias:

Variational Learning of Inducing Variables in Sparse Gaussian Processes. 567-574 - Changhu Wang, Shuicheng Yan, Lei Zhang, HongJiang Zhang:

Non-Negative Semi-Supervised Learning. 575-582 - Chong Wang, Bo Thiesson, Christopher Meek, David M. Blei:

Markov Topic Models. 583-590 - Shijun Wang, Rong Jin:

An Information Geometry Approach for Distance Metric Learning. 591-598 - Zhuoran Wang, John Shawe-Taylor:

Large-Margin Structured Prediction via Linear Programming. 599-606 - Frank D. Wood, Yee Whye Teh:

A Hierarchical Nonparametric Bayesian Approach to Statistical Language Model Domain Adaptation. 607-614 - Yongxin Taylor Xi, Zhen James Xiang, Peter J. Ramadge, Robert E. Schapire:

Speed and Sparsity of Regularized Boosting. 615-622 - Yang Xu, Katherine A. Heller, Zoubin Ghahramani:

Tree-Based Inference for Dirichlet Process Mixtures. 623-630 - Min Yang, Yuxi Li, Dale Schuurmans:

Dual Temporal Difference Learning. 631-638 - Shipeng Yu, Balaji Krishnapuram, Rómer Rosales, R. Bharat Rao:

Active Sensing. 639-646 - Zhihua Zhang, Michael I. Jordan, Wu-Jun Li, Dit-Yan Yeung:

Coherence Functions for Multicategory Margin-based Classification Methods. 647-654 - Zhihua Zhang, Michael I. Jordan:

Latent Variable Models for Dimensionality Reduction. 655-662 - Mingjun Zhong, Mark A. Girolami:

Reversible Jump MCMC for Non-Negative Matrix Factorization. 663-670

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














