


default search action
8th Brainles@MICCAI 2022: Singapore - Part II
- Spyridon Bakas

, Alessandro Crimi
, Ujjwal Baid
, Sylwia Malec
, Monika Pytlarz
, Bhakti Baheti
, Maximilian Zenk
, Reuben Dorent
:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries - 8th International Workshop, BrainLes 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Revised Selected Papers, Part II. Lecture Notes in Computer Science 14092, Springer 2023, ISBN 978-3-031-44152-3
BraTS-Reg
- Kewei Yan, Yonghong Yan:

Applying Quadratic Penalty Method for Intensity-Based Deformable Image Registration on BraTS-Reg Challenge 2022. 3-14 - Sahar Almahfouz Nasser, Nikhil Cherian Kurian, Mohit Meena, Saqib Shamsi, Amit Sethi:

WSSAMNet: Weakly Supervised Semantic Attentive Medical Image Registration Network. 15-24 - Ramy A. Zeineldin

, Mohamed E. Karar, Franziska Mathis-Ullrich, Oliver Burgert:
Self-supervised iRegNet for the Registration of Longitudinal Brain MRI of Diffuse Glioma Patients. 25-34 - Javid Abderezaei, Aymeric Pionteck, Agamdeep Chopra, Mehmet Kurt

:
3D Inception-Based TransMorph: Pre- and Post-operative Multi-contrast MRI Registration in Brain Tumors. 35-45
CrossMoDa
- Luyi Han, Yunzhi Huang, Tao Tan, Ritse Mann:

Unsupervised Cross-Modality Domain Adaptation for Vestibular Schwannoma Segmentation and Koos Grade Prediction Based on Semi-supervised Contrastive Learning. 49-58 - Tao Yang

, Lisheng Wang
:
Koos Classification of Vestibular Schwannoma via Image Translation-Based Unsupervised Cross-Modality Domain Adaptation. 59-67 - Ziyuan Zhao, Kaixin Xu, Huai Zhe Yeo, Xulei Yang, Cuntai Guan:

MS-MT: Multi-scale Mean Teacher with Contrastive Unpaired Translation for Cross-Modality Vestibular Schwannoma and Cochlea Segmentation. 68-78 - Yuzhou Zhuang, Hong Liu, Enmin Song, Coskun Cetinkaya, Chih-Cheng Hung:

An Unpaired Cross-Modality Segmentation Framework Using Data Augmentation and Hybrid Convolutional Networks for Segmenting Vestibular Schwannoma and Cochlea. 79-89 - Shahad Hardan, Hussain Alasmawi, Xiangjian Hou, Mohammad Yaqub:

Weakly Unsupervised Domain Adaptation for Vestibular Schwannoma Segmentation. 90-99 - Bogyeong Kang, Hyeonyeong Nam, Ji-Wung Han, Keun-Soo Heo, Tae-Eui Kam:

Multi-view Cross-Modality MR Image Translation for Vestibular Schwannoma and Cochlea Segmentation. 100-108 - Han Liu, Yubo Fan, Ipek Oguz

, Benoit M. Dawant:
Enhancing Data Diversity for Self-training Based Unsupervised Cross-Modality Vestibular Schwannoma and Cochlea Segmentation. 109-118
FeTS
- Muhammad Irfan Khan, Mohammad Ayyaz Azeem, Esa Alhoniemi, Elina Kontio, Suleiman A. Khan, Mojtaba Jafaritadi:

Regularized Weight Aggregation in Networked Federated Learning for Glioblastoma Segmentation. 121-132 - Gaurav Singh:

A Local Score Strategy for Weight Aggregation in Federated Learning. 133-141 - Jianxun Ren, Wei Zhang, Ning An, Qingyu Hu

, Youjia Zhang, Ying Zhou:
Ensemble Outperforms Single Models in Brain Tumor Segmentation. 142-153 - Vasilis Siomos, Giacomo Tarroni, Jonathan Passerat-Palmbach:

FeTS Challenge 2022 Task 1: Implementing FedMGDA + and a New Partitioning. 154-160 - Meirui Jiang, Hongzheng Yang, Xiaofan Zhang, Shaoting Zhang, Qi Dou:

Efficient Federated Tumor Segmentation via Parameter Distance Weighted Aggregation and Client Pruning. 161-172 - Himashi Peiris

, Munawar Hayat, Zhaolin Chen, Gary F. Egan, Mehrtash Harandi:
Hybrid Window Attention Based Transformer Architecture for Brain Tumor Segmentation. 173-182 - Ambrish Rawat, Giulio Zizzo, Swanand Kadhe, Jonathan P. Epperlein, Stefano Braghin

:
Robust Learning Protocol for Federated Tumor Segmentation Challenge. 183-195 - Yuan Wang, Renuga Kanagavelu, Qingsong Wei, Yechao Yang, Yong Liu:

Model Aggregation for Federated Learning Considering Non-IID and Imbalanced Data Distribution. 196-208 - Leon Mächler, Ivan Ezhov, Suprosanna Shit, Johannes C. Paetzold:

FedPIDAvg: A PID Controller Inspired Aggregation Method for Federated Learning. 209-217 - Krzysztof Kotowski, Szymon Adamski, Bartosz Machura, Wojciech Malara, Lukasz Zarudzki, Jakub Nalepa:

Federated Evaluation of nnU-Nets Enhanced with Domain Knowledge for Brain Tumor Segmentation. 218-227 - Yaying Shi, Hongjian Gao, Salman Avestimehr, Yonghong Yan:

Experimenting FedML and NVFLARE for Federated Tumor Segmentation Challenge. 228-240

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














