


default search action
Journal of Machine Learning Research, Volume 4
Volume 4, April 2003
- Aldebaro Klautau, Nikola Jevtic, Alon Orlitsky:

On Nearest-Neighbor Error-Correcting Output Codes with Application to All-Pairs Multiclass Support Vector Machines. 1-15 - Vassilios Petridis, Vassilis G. Kaburlasos:

FINkNN: A Fuzzy Interval Number k-Nearest Neighbor Classifier for Prediction of Sugar Production from Populations of Samples. 17-37 - Stefan W. Christensen, Ian Sinclair, Philippa A. S. Reed:

Designing Committees of Models through Deliberate Weighting of Data Points. 39-66 - Koji Tsuda, Shotaro Akaho, Kiyoshi Asai:

The em Algorithm for Kernel Matrix Completion with Auxiliary Data. 67-81
Volume 4, May 2003
- Bart Bakker, Tom Heskes:

Task Clustering and Gating for Bayesian Multitask Learning. 83-99 - Dmitry Gavinsky:

Optimally-Smooth Adaptive Boosting and Application to Agnostic Learning. 101-117
Volume 4, June 2003
- Lawrence K. Saul, Sam T. Roweis:

Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold. 119-155 - Nader H. Bshouty, Lynn Burroughs:

On the Proper Learning of Axis-Parallel Concepts. 157-176 - Mary Elaine Califf, Raymond J. Mooney:

Bottom-Up Relational Learning of Pattern Matching Rules for Information Extraction. 177-210 - Claudia Perlich, Foster J. Provost, Jeffrey S. Simonoff:

Tree Induction vs. Logistic Regression: A Learning-Curve Analysis. 211-255
Volume 4, July 2003
- Craig Friedman, Sven Sandow:

Learning Probabilistic Models: An Expected Utility Maximization Approach. 257-291
- Marek J. Druzdzel, Francisco Javier Díez:

Combining Knowledge from Different Sources in Causal Probabilistic Models. 295-316 - Peter Haddawy, Vu A. Ha, Angelo C. Restificar, Benjamin Geisler, John Miyamoto:

Preference Elicitation via Theory Refinement. 317-337 - Helge Langseth, Thomas D. Nielsen:

Fusion of Domain Knowledge with Data for Structural Learning in Object Oriented Domains. 339-368 - Ashwin Srinivasan, Ross D. King, Michael Bain:

An Empirical Study of the Use of Relevance Information in Inductive Logic Programming. 369-383 - Sandra Clara Gadanho:

Learning Behavior-Selection by Emotions and Cognition in a Multi-Goal Robot Task. 385-412
Volume 4, August 2003
- David Page, Ashwin Srinivasan:

ILP: A Short Look Back and a Longer Look Forward. 415-430 - Marco Botta, Attilio Giordana, Lorenza Saitta, Michèle Sebag:

Relational Learning as Search in a Critical Region. 431-463 - Vítor Santos Costa, Ashwin Srinivasan, Rui Camacho, Hendrik Blockeel, Bart Demoen, Gerda Janssens, Jan Struyf, Henk Vandecasteele, Wim Van Laer:

Query Transformations for Improving the Efficiency of ILP Systems. 465-491 - Vincent Claveau, Pascale Sébillot, Cécile Fabre, Pierrette Bouillon:

Learning Semantic Lexicons from a Part-of-Speech and Semantically Tagged Corpus Using Inductive Logic Programming. 493-525
Volume 4, September 2003
- Robert Castelo, Tomás Kocka:

On Inclusion-Driven Learning of Bayesian Networks. 527-574 - Pierre Baldi, Gianluca Pollastri:

The Principled Design of Large-Scale Recursive Neural Network Architectures--DAG-RNNs and the Protein Structure Prediction Problem. 575-602 - Orlando Cicchello, Stefan C. Kremer:

Inducing Grammars from Sparse Data Sets: A Survey of Algorithms and Results. 603-632 - Rocco A. Servedio:

Smooth Boosting and Learning with Malicious Noise. 633-648 - Shaul Markovitch, Asaf Shatil:

Speedup Learning for Repair-based Search by Identifying Redundant Steps. 649-682
Volume 4, October 2003
- Bertrand S. Clarke:

Comparing Bayes Model Averaging and Stacking When Model Approximation Error Cannot be Ignored. 683-712 - Shie Mannor, Ron Meir, Tong Zhang:

Greedy Algorithms for Classification -- Consistency, Convergence Rates, and Adaptivity. 713-741 - Christian d'Avignon, Donald Geman:

Tree-Structured Neural Decoding. 743-754
- Ralf Herbrich, Thore Graepel:

Introduction to the Special Issue on Learning Theory. 755-757 - Shahar Mendelson:

On the Performance of Kernel Classes. 759-771 - Eiji Takimoto, Manfred K. Warmuth:

Path Kernels and Multiplicative Updates. 773-818 - Chris Mesterharm:

Tracking Linear-threshold Concepts with Winnow. 819-838 - Ron Meir, Tong Zhang:

Generalization Error Bounds for Bayesian Mixture Algorithms. 839-860 - Gilles Blanchard, Gábor Lugosi, Nicolas Vayatis:

On the Rate of Convergence of Regularized Boosting Classifiers. 861-894 - David A. McAllester, Luis E. Ortiz:

Concentration Inequalities for the Missing Mass and for Histogram Rule Error. 895-911 - Lior Wolf, Amnon Shashua:

Learning over Sets using Kernel Principal Angles. 913-931
Volume 4, November 2003
- Yoav Freund, Raj D. Iyer, Robert E. Schapire, Yoram Singer:

An Efficient Boosting Algorithm for Combining Preferences. 933-969 - Marcus Hutter:

Optimality of Universal Bayesian Sequence Prediction for General Loss and Alphabet. 971-1000 - Shi Zhong, Joydeep Ghosh:

A Unified Framework for Model-based Clustering. 1001-1037 - Junling Hu, Michael P. Wellman:

Nash Q-Learning for General-Sum Stochastic Games. 1039-1069 - Ingo Steinwart:

Sparseness of Support Vector Machines. 1071-1105
Volume 4, December 2003
- Michail G. Lagoudakis, Ronald Parr:

Least-Squares Policy Iteration. 1107-1149 - Dörthe Malzahn, Manfred Opper:

An Approximate Analytical Approach to Resampling Averages. 1151-1173
- Te-Won Lee, Jean-François Cardoso, Erkki Oja, Shun-ichi Amari:

Introduction to Special Issue on Independent Components Analysis. 1175-1176 - Jean-François Cardoso:

Dependence, Correlation and Gaussianity in Independent Component Analysis. 1177-1203 - Francis R. Bach, Michael I. Jordan:

Beyond Independent Components: Trees and Clusters. 1205-1233 - Yee Whye Teh, Max Welling, Simon Osindero, Geoffrey E. Hinton:

Energy-Based Models for Sparse Overcomplete Representations. 1235-1260 - Lucas C. Parra, Paul Sajda:

Blind Source Separation via Generalized Eigenvalue Decomposition. 1261-1269 - Erik G. Learned-Miller, John W. Fisher III:

ICA Using Spacings Estimates of Entropy. 1271-1295 - Luís B. Almeida:

MISEP -- Linear and Nonlinear ICA Based on Mutual Information. 1297-1318 - Andreas Ziehe, Motoaki Kawanabe, Stefan Harmeling, Klaus-Robert Müller:

Blind Separation of Post-nonlinear Mixtures using Linearizing Transformations and Temporal Decorrelation. 1319-1338 - Pavel Kisilev, Michael Zibulevsky, Yehoshua Y. Zeevi:

A Multiscale Framework For Blind Separation of Linearly Mixed Signals. 1339-1363 - Gil-Jin Jang, Te-Won Lee:

A Maximum Likelihood Approach to Single-channel Source Separation. 1365-1392 - Gleb Basalyga, Magnus Rattray:

Statistical Dynamics of On-line Independent Component Analysis. 1393-1410 - Khurram Waheed, Fathi M. Salem:

Blind Source Recovery: A Framework in the State Space. 1411-1446 - Jaakko Särelä, Ricardo Vigário:

Overlearning in Marginal Distribution-Based ICA: Analysis and Solutions. 1447-1469 - Stéphane Bounkong, Borémi Toch, David Saad, David Lowe:

ICA for Watermarking Digital Images. 1471-1498 - Inna Stainvas, David Lowe:

A Generative Model for Separating Illumination and Reflectance from Images. 1499-1519

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














