Browse using
OpenLink Faceted Browser
OpenLink Structured Data Editor
LodLive Browser
Formats
RDF:
N-Triples
N3
Turtle
JSON
XML
OData:
Atom
JSON
Microdata:
JSON
HTML
Embedded:
JSON
Turtle
Other:
CSV
JSON-LD
Faceted Browser
Sparql Endpoint
About:
http://dbpedia.org/class/yago/WikicatTheoremsInAlgebra
An Entity of Type:
Thing
,
from Named Graph:
http://dbpedia.org
,
within Data Space:
dbpedia.org
Property
Value
rdfs:
subClassOf
yago
:Theorem106752293
owl:
equivalentClass
yago-res
:wikicat_Theorems_in_algebra
is
rdf:
type
of
dbr
:Cartan–Dieudonné_theorem
dbr
:Catalan's_conjecture
dbr
:Amitsur–Levitzki_theorem
dbr
:Beck's_monadicity_theorem
dbr
:Engel's_theorem
dbr
:Mordell–Weil_theorem
dbr
:Mori–Nagata_theorem
dbr
:Beatty_sequence
dbr
:Binomial_theorem
dbr
:De_Moivre's_formula
dbr
:Hurwitz's_theorem_(composition_algebras)
dbr
:Hurwitz's_theorem_(number_theory)
dbr
:Degen's_eight-square_identity
dbr
:Descartes'_rule_of_signs
dbr
:Jacobson–Bourbaki_theorem
dbr
:Lie–Kolchin_theorem
dbr
:Isomorphism_theorem
dbr
:Sylvester's_law_of_inertia
dbr
:Artin–Wedderburn_theorem
dbr
:Cramer's_rule
dbr
:Maschke's_theorem
dbr
:Chevalley–Warning_theorem
dbr
:Generic_flatness
dbr
:Niven's_theorem
dbr
:Roth's_theorem
dbr
:Frobenius_theorem_(real_division_algebras)
dbr
:Fundamental_theorem_of_Galois_theory
dbr
:Fundamental_theorem_of_algebra
dbr
:Gauss's_lemma_(polynomial)
dbr
:Multinomial_theorem
dbr
:Crystallographic_restriction_theorem
dbr
:Subgroups_of_cyclic_groups
dbr
:Wedderburn's_little_theorem
dbr
:Lindemann–Weierstrass_theorem
dbr
:Chowla–Mordell_theorem
dbr
:Six_exponentials_theorem
dbr
:Stickelberger's_theorem
dbr
:Stone's_representation_theorem_for_Boolean_algebras
dbr
:Complex_conjugate_root_theorem
dbr
:Frobenius_determinant_theorem
dbr
:Fundamental_lemma_(Langlands_program)
dbr
:Fundamental_theorem_on_homomorphisms
dbr
:Hahn_embedding_theorem
dbr
:Harish-Chandra_isomorphism
dbr
:Kronecker–Weber_theorem
dbr
:Krull's_principal_ideal_theorem
dbr
:Krull's_theorem
dbr
:Krull–Akizuki_theorem
dbr
:Normal_basis
dbr
:Strassmann's_theorem
dbr
:Mason–Stothers_theorem
dbr
:Bézout's_identity
dbr
:Addition_theorem
dbr
:Ado's_theorem
dbr
:Cauchy's_theorem_(group_theory)
dbr
:Cayley–Hamilton_theorem
dbr
:Haynsworth_inertia_additivity_formula
dbr
:Liouville's_theorem_(differential_algebra)
dbr
:Representation_theorem
dbr
:Witt's_theorem
dbr
:Alperin–Brauer–Gorenstein_theorem
dbr
:Fermat's_Last_Theorem
dbr
:Cayley's_theorem
dbr
:Binomial_inverse_theorem
dbr
:Gershgorin_circle_theorem
dbr
:Haran's_diamond_theorem
dbr
:Hilbert's_Theorem_90
dbr
:Hilbert's_basis_theorem
dbr
:Hilbert's_irreducibility_theorem
dbr
:Hilbert–Burch_theorem
dbr
:Isomorphism_extension_theorem
dbr
:Koecher–Vinberg_theorem
dbr
:Polynomial_remainder_theorem
dbr
:Primitive_element_theorem
dbr
:Rational_root_theorem
dbr
:Regev's_theorem
dbr
:Weierstrass_preparation_theorem
dbr
:Hilbert's_Nullstellensatz
dbr
:Baker's_theorem
dbr
:Sylvester's_determinant_identity
dbr
:AF+BG_theorem
dbr
:Abel's_binomial_theorem
dbr
:Abel–Ruffini_theorem
dbr
:Birkhoff's_representation_theorem
dbr
:Sylow_theorems
dbr
:Cohen_structure_theorem
dbr
:Cohn's_irreducibility_criterion
dbr
:Higman's_embedding_theorem
dbr
:Hochster–Roberts_theorem
dbr
:Wilson's_theorem
dbr
:Mitchell's_embedding_theorem
dbr
:Principal_ideal_theorem
dbr
:Dirichlet's_unit_theorem
dbr
:Ax–Grothendieck_theorem
dbr
:Boolean_prime_ideal_theorem
dbr
:Poincaré–Birkhoff–Witt_theorem
dbr
:Classification_of_finite_simple_groups
dbr
:Hua's_identity
dbr
:Hudde's_rules
dbr
:Induced_representation
dbr
:Budan's_theorem
dbr
:Cartan–Brauer–Hua_theorem
dbr
:Max_Noether's_theorem
dbr
:Nielsen–Schreier_theorem
dbr
:Factor_theorem
dbr
:Lagrange's_theorem
dbr
:Finitely_generated_abelian_group
dbr
:Fitting's_theorem
dbr
:Milnor_conjecture
dbr
:Takagi_existence_theorem
dbr
:Whitehead's_lemma
dbr
:Weil_conjecture_on_Tamagawa_numbers
dbr
:Norm_residue_isomorphism_theorem
dbr
:Sinkhorn's_theorem
dbr
:Segal_conjecture
dbr
:Skolem–Noether_theorem
dbr
:Riemann–Roch_theorem
dbr
:Specht's_theorem
This content was extracted from
Wikipedia
and is licensed under the
Creative Commons Attribution-ShareAlike 3.0 Unported License