In probability theory, a branching random walk is a stochastic process that generalizes both the concept of a random walk and of a branching process. At every generation (a point of discrete time), a branching random walk's value is a set of elements that are located in some linear space, such as the real line. Each element of a given generation can have several descendants in the next generation. The location of any descendant is the sum of its parent's location and a random variable.
Property | Value |
---|---|
dbo:abstract |
|
dbo:thumbnail | |
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink |
|
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
gold:hypernym | |
rdf:type | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:depiction | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |