dbo:abstract
|
- Die Bruhat-Zerlegung ist eine fundamentale Methode aus der Theorie der algebraischen Gruppen. Sie verallgemeinert die aus dem Gaußschen Eliminationsverfahren bekannte Tatsache, dass jede Matrix als Produkt einer oberen und unteren Dreiecksmatrix zerlegt werden kann. Benannt ist die Methode nach François Bruhat. (de)
- In mathematics, the Bruhat decomposition (introduced by François Bruhat for classical groups and by Claude Chevalley in general) G = BWB of certain algebraic groups G into cells can be regarded as a general expression of the principle of Gauss–Jordan elimination, which generically writes a matrix as a product of an upper triangular and lower triangular matrices—but with exceptional cases. It is related to the Schubert cell decomposition of flag varieties: see Weyl group for this. More generally, any group with a (B, N) pair has a Bruhat decomposition. (en)
- 数学におけるブリュア分解(ぶりゅあぶんかい、英: Bruhat decomposition)G = BWB は、(行列を上半および下半三角行列の積として表す方法としての)ガウス=ジョルダン消去法の一般化とみることのできる、群 G の胞体分割である。ブリュア分解は旗多様体の分解に関係がある(ワイル群も参照)。名称はに因む。 より一般に、BN対を持つ任意の群がブリュア分解を持つ。 (ja)
- 리 군 이론에서, 브뤼아 분해(영어: Bruhat decomposition)는 가우스-요르단 소거법을 임의의 리 군에 대하여 일반화한 분해이다. (ko)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 4639 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdf:type
| |
rdfs:comment
|
- Die Bruhat-Zerlegung ist eine fundamentale Methode aus der Theorie der algebraischen Gruppen. Sie verallgemeinert die aus dem Gaußschen Eliminationsverfahren bekannte Tatsache, dass jede Matrix als Produkt einer oberen und unteren Dreiecksmatrix zerlegt werden kann. Benannt ist die Methode nach François Bruhat. (de)
- In mathematics, the Bruhat decomposition (introduced by François Bruhat for classical groups and by Claude Chevalley in general) G = BWB of certain algebraic groups G into cells can be regarded as a general expression of the principle of Gauss–Jordan elimination, which generically writes a matrix as a product of an upper triangular and lower triangular matrices—but with exceptional cases. It is related to the Schubert cell decomposition of flag varieties: see Weyl group for this. More generally, any group with a (B, N) pair has a Bruhat decomposition. (en)
- 数学におけるブリュア分解(ぶりゅあぶんかい、英: Bruhat decomposition)G = BWB は、(行列を上半および下半三角行列の積として表す方法としての)ガウス=ジョルダン消去法の一般化とみることのできる、群 G の胞体分割である。ブリュア分解は旗多様体の分解に関係がある(ワイル群も参照)。名称はに因む。 より一般に、BN対を持つ任意の群がブリュア分解を持つ。 (ja)
- 리 군 이론에서, 브뤼아 분해(영어: Bruhat decomposition)는 가우스-요르단 소거법을 임의의 리 군에 대하여 일반화한 분해이다. (ko)
|
rdfs:label
|
- Bruhat-Zerlegung (de)
- Bruhat decomposition (en)
- 브뤼아 분해 (ko)
- ブリュア分解 (ja)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:knownFor
of | |
is dbo:wikiPageWikiLink
of | |
is dbp:knownFor
of | |
is foaf:primaryTopic
of | |