About: Cantor cube

An Entity of Type: Band, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, a Cantor cube is a topological group of the form {0, 1}A for some index set A. Its algebraic and topological structures are the group direct product and product topology over the cyclic group of order 2 (which is itself given the discrete topology). If A is a countably infinite set, the corresponding Cantor cube is a Cantor space. Cantor cubes are special among compact groups because every compact group is a continuous image of one, although usually not a homomorphic image. (The literature can be unclear, so for safety, assume all spaces are Hausdorff.)

Property Value
dbo:abstract
  • In mathematics, a Cantor cube is a topological group of the form {0, 1}A for some index set A. Its algebraic and topological structures are the group direct product and product topology over the cyclic group of order 2 (which is itself given the discrete topology). If A is a countably infinite set, the corresponding Cantor cube is a Cantor space. Cantor cubes are special among compact groups because every compact group is a continuous image of one, although usually not a homomorphic image. (The literature can be unclear, so for safety, assume all spaces are Hausdorff.) Topologically, any Cantor cube is: * homogeneous; * compact; * zero-dimensional; * AE(0), an for compact zero-dimensional spaces. (Every map from a closed subset of such a space into a Cantor cube extends to the whole space.) By a theorem of Schepin, these four properties characterize Cantor cubes; any space satisfying the properties is homeomorphic to a Cantor cube. In fact, every AE(0) space is the continuous image of a Cantor cube, and with some effort one can prove that every compact group is AE(0). It follows that every zero-dimensional compact group is homeomorphic to a Cantor cube, and every compact group is a continuous image of a Cantor cube. (en)
  • Kostka Cantora (ciężaru gdzie jest nieskończoną liczbą kardynalną) – przestrzeń produktowa kopii zbioru z topologią dyskretną. Kostka Cantora ciężaru oznacza jest zwykle symbolem – dokładniej: gdzie jest dowolnym zbiorem mocy oraz dla każdego zbiór jest dwuelementową przestrzenią dyskretną, np. Dla przestrzeń nazywamy zbiorem Cantora. (pl)
  • Em matemática, mas especificamente em topologia geral, o cubo de Cantor é a generalização do conjunto ternário de Cantor. (pt)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 4999981 (xsd:integer)
dbo:wikiPageLength
  • 1882 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 935192414 (xsd:integer)
dbo:wikiPageWikiLink
dbp:author
  • A.A. Mal'tsev (en)
dbp:id
  • C/c023230 (en)
dbp:title
  • Colon (en)
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • Kostka Cantora (ciężaru gdzie jest nieskończoną liczbą kardynalną) – przestrzeń produktowa kopii zbioru z topologią dyskretną. Kostka Cantora ciężaru oznacza jest zwykle symbolem – dokładniej: gdzie jest dowolnym zbiorem mocy oraz dla każdego zbiór jest dwuelementową przestrzenią dyskretną, np. Dla przestrzeń nazywamy zbiorem Cantora. (pl)
  • Em matemática, mas especificamente em topologia geral, o cubo de Cantor é a generalização do conjunto ternário de Cantor. (pt)
  • In mathematics, a Cantor cube is a topological group of the form {0, 1}A for some index set A. Its algebraic and topological structures are the group direct product and product topology over the cyclic group of order 2 (which is itself given the discrete topology). If A is a countably infinite set, the corresponding Cantor cube is a Cantor space. Cantor cubes are special among compact groups because every compact group is a continuous image of one, although usually not a homomorphic image. (The literature can be unclear, so for safety, assume all spaces are Hausdorff.) (en)
rdfs:label
  • Cantor cube (en)
  • Cubo de Cantor (pt)
  • Kostka Cantora (pl)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License